These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36084555)

  • 1. Caveolin 3 suppresses phosphorylation-dependent activation of sarcolemmal nNOS.
    Ohsawa Y; Ohtsubo H; Saito Y; Nishimatsu SI; Hagiwara H; Murakami T; Nishino I; Sunada Y
    Biochem Biophys Res Commun; 2022 Nov; 628():84-90. PubMed ID: 36084555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcolemmal neuronal nitric oxide synthase defect in limb-girdle muscular dystrophy: an adverse modulating factor in the disease course?
    Fanin M; Tasca E; Nascimbeni AC; Angelini C
    J Neuropathol Exp Neurol; 2009 Apr; 68(4):383-90. PubMed ID: 19287313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity.
    Ohsawa Y; Toko H; Katsura M; Morimoto K; Yamada H; Ichikawa Y; Murakami T; Ohkuma S; Komuro I; Sunada Y
    Hum Mol Genet; 2004 Jan; 13(2):151-7. PubMed ID: 14645200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic mice expressing mutant caveolin-3 show severe myopathy associated with increased nNOS activity.
    Sunada Y; Ohi H; Hase A; Ohi H; Hosono T; Arata S; Higuchi S; Matsumura K; Shimizu T
    Hum Mol Genet; 2001 Feb; 10(3):173-8. PubMed ID: 11159934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase.
    Madaro L; Marrocco V; Fiore P; Aulino P; Smeriglio P; Adamo S; Molinaro M; Bouché M
    Mol Biol Cell; 2011 Apr; 22(8):1409-19. PubMed ID: 21346196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy.
    Wehling-Henricks M; Oltmann M; Rinaldi C; Myung KH; Tidball JG
    Hum Mol Genet; 2009 Sep; 18(18):3439-51. PubMed ID: 19542095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Association between dystrophin and neuronal nitric oxide synthase in muscles of progressive muscular dystrophy].
    Wang S; Shen D
    Zhonghua Yi Xue Za Zhi; 2002 Feb; 82(3):155-7. PubMed ID: 11953148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition.
    Ohsawa Y; Hagiwara H; Nakatani M; Yasue A; Moriyama K; Murakami T; Tsuchida K; Noji S; Sunada Y
    J Clin Invest; 2006 Nov; 116(11):2924-34. PubMed ID: 17039257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function.
    Zhao J; Yang HT; Wasala L; Zhang K; Yue Y; Duan D; Lai Y
    Mol Med; 2019 Jul; 25(1):31. PubMed ID: 31266455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation.
    Watts VL; Sepulveda FM; Cingolani OH; Ho AS; Niu X; Kim R; Miller KL; Vandegaer K; Bedja D; Gabrielson KL; Rameau G; O'Rourke B; Kass DA; Barouch LA
    J Mol Cell Cardiol; 2013 Sep; 62():8-17. PubMed ID: 23643588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain.
    Konas DW; Zhu K; Sharma M; Aulak KS; Brudvig GW; Stuehr DJ
    J Biol Chem; 2004 Aug; 279(34):35412-25. PubMed ID: 15180983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy.
    Lechado I Terradas A; Vitadello M; Traini L; Namuduri AV; Gastaldello S; Gorza L
    J Pathol; 2018 Dec; 246(4):433-446. PubMed ID: 30066461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
    Haque MM; Fadlalla M; Wang ZQ; Ray SS; Panda K; Stuehr DJ
    J Biol Chem; 2009 Jul; 284(29):19237-47. PubMed ID: 19473991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases.
    Panda SP; Gao YT; Roman LJ; Martásek P; Salerno JC; Masters BS
    J Biol Chem; 2006 Nov; 281(45):34246-57. PubMed ID: 16966328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C.
    Volonte D; Peoples AJ; Galbiati F
    Mol Biol Cell; 2003 Oct; 14(10):4075-88. PubMed ID: 14517320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation.
    Merrick D; Stadler LK; Larner D; Smith J
    Dis Model Mech; 2009; 2(7-8):374-88. PubMed ID: 19535499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of C415 mutants of neuronal nitric oxide synthase.
    Richards MK; Clague MJ; Marletta MA
    Biochemistry; 1996 Jun; 35(24):7772-80. PubMed ID: 8672477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains.
    Haque MM; Fadlalla MA; Aulak KS; Ghosh A; Durra D; Stuehr DJ
    J Biol Chem; 2012 Aug; 287(36):30105-16. PubMed ID: 22722929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.