These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36084576)

  • 1. Small, smaller, smallest: Miniaturization of chromatographic process development.
    Silva TC; Eppink M; Ottens M
    J Chromatogr A; 2022 Oct; 1681():463451. PubMed ID: 36084576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recent advances in microchip liquid chromatography].
    Wen H; Zhu J; Zhang B
    Se Pu; 2021 Apr; 39(4):357-367. PubMed ID: 34227755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput methods for miniaturization and automation of monoclonal antibody purification processes.
    Treier K; Hansen S; Richter C; Diederich P; Hubbuch J; Lester P
    Biotechnol Prog; 2012; 28(3):723-32. PubMed ID: 22467605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed microfluidic device for protein purification in batch chromatography.
    Habib T; Brämer C; Heuer C; Ebbecke J; Beutel S; Bahnemann J
    Lab Chip; 2022 Mar; 22(5):986-993. PubMed ID: 35107475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.
    Kittelmann J; Ottens M; Hubbuch J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():98-105. PubMed ID: 25765136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.
    Waldbaur A; Kittelmann J; Radtke CP; Hubbuch J; Rapp BE
    Lab Chip; 2013 Jun; 13(12):2337-43. PubMed ID: 23639992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital twin in high throughput chromatographic process development for monoclonal antibodies.
    Silva TC; Eppink M; Ottens M
    J Chromatogr A; 2024 Feb; 1717():464672. PubMed ID: 38350166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust robotic high-throughput antibody purification platform.
    Schmidt PM; Abdo M; Butcher RE; Yap MY; Scotney PD; Ramunno ML; Martin-Roussety G; Owczarek C; Hardy MP; Chen CG; Fabri LJ
    J Chromatogr A; 2016 Jul; 1455():9-19. PubMed ID: 27283099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.
    Elich T; Iskra T; Daniels W; Morrison CJ
    Biotechnol Bioeng; 2016 Jun; 113(6):1251-9. PubMed ID: 26552005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening of chromatographic separations: I. Method development and column modeling.
    Coffman JL; Kramarczyk JF; Kelley BD
    Biotechnol Bioeng; 2008 Jul; 100(4):605-18. PubMed ID: 18496874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Microfluidic Capillary Electrophoresis for the Determination of Multi-Component Protein Adsorption Isotherms: Application to High-Throughput Analysis for Hydrophobic Interaction Chromatography.
    Lietta E; Pieri A; Innocenti E; Pisano R; Vanni M; Barresi AA
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel 3D-Printed and Miniaturized Periodic Counter Current Chromatography System for Continuous Purification of Monoclonal Antibodies.
    Kortmann C; Habib T; Heuer C; Solle D; Bahnemann J
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturized parallel screens to identify chromatographic steps required for recombinant protein purification.
    Rege K; Heng M
    Nat Protoc; 2010 Mar; 5(3):408-17. PubMed ID: 20203660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated microscale chromatographic purification of virus-like particles as a strategy for process development.
    Wenger MD; Dephillips P; Price CE; Bracewell DG
    Biotechnol Appl Biochem; 2007 Jun; 47(Pt 2):131-9. PubMed ID: 17311568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Process Development for the Chromatographic Purification of Viral Antigens.
    Jacob SI; Konstantinidis S; Bracewell DG
    Methods Mol Biol; 2021; 2183():119-182. PubMed ID: 32959244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrospective Evaluation of Cycled Resin in Viral Clearance Studies-A Multiple Company Collaboration.
    Mattila J; Curtis S; Webb-Vargas Y; Wilson E; Galperina O; Roush D; Tobler S; Stanley B; Clark M; Weaver J; Pike J; Yu D; Li X; Flicker A; Kindermann J; Schuelke N; Whitcombe R; Bennett L
    PDA J Pharm Sci Technol; 2019; 73(5):470-486. PubMed ID: 31101706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals.
    Sharma V; Mottafegh A; Joo JU; Kang JH; Wang L; Kim DP
    Lab Chip; 2024 May; 24(11):2861-2882. PubMed ID: 38751338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput process development for recombinant protein purification.
    Rege K; Pepsin M; Falcon B; Steele L; Heng M
    Biotechnol Bioeng; 2006 Mar; 93(4):618-30. PubMed ID: 16369981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of inline variable pathlength technology for rapid determination of dynamic binding capacity in downstream process development of biopharmaceuticals.
    Bhangale RP; Ye R; Lindsey TB; Wolfe LS
    Biotechnol Prog; 2022 Mar; 38(2):e3236. PubMed ID: 35064963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low pressure on-chip injection strategy for high-performance chip-based chromatography.
    Thurmann S; Dittmar A; Belder D
    J Chromatogr A; 2014 May; 1340():59-67. PubMed ID: 24674642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.