BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36084877)

  • 1. Process intensification of atorvastatin calcium crystallization for target polymorph development via continuous combined cooling and antisolvent crystallization using an oscillatory baffled crystallizer.
    Kshirsagar S; Lakshmi Ramana Susarla N; Ramakrishnan S; Nagy ZK
    Int J Pharm; 2022 Nov; 627():122172. PubMed ID: 36084877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Transfer and Residence Time Distribution in Plug Flow Continuous Oscillatory Baffled Crystallizers.
    Briggs NEB; McGinty J; McCabe C; Raval V; Sefcik J; Florence AJ
    ACS Omega; 2021 Jul; 6(28):18352-18363. PubMed ID: 34308066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of antisolvent crystallization of sodium scutellarein by combined FBRM-PVM-NIR.
    Liu X; Sun D; Wang F; Wu Y; Chen Y; Wang L
    J Pharm Sci; 2011 Jun; 100(6):2452-9. PubMed ID: 21246557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Wet Milling Combined with Temperature Cycling to Minimize Crystal Agglomeration in a Sequential Antisolvent-Cooling Crystallization.
    Sun Z; Quon JL; Papageorgiou CD; Benyahia B; Rielly CD
    Cryst Growth Des; 2022 Aug; 22(8):4730-4744. PubMed ID: 35942120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient crystallization process of dodecanedioic acid by a pneumatically agitated crystallizer.
    Duan J; Chen L; Hong R; Li Y; Huang J
    Prep Biochem Biotechnol; 2023; 53(8):1004-1011. PubMed ID: 36651905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Batch Crystallization of Xylitol by Cooling, Evaporative, and Antisolvent Crystallization.
    Zaykovskaya A; Louhi-Kultanen M
    Cryst Growth Des; 2023 Mar; 23(3):1813-1820. PubMed ID: 36879775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of drug processability in a connected continuous crystallizer system using formulation additive.
    Tacsi K; Stoffán G; Galata DL; Pusztai É; Gyürkés M; Nagy B; Szilágyi B; Nagy ZK; Marosi G; Pataki H
    Int J Pharm; 2023 Mar; 635():122725. PubMed ID: 36804519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Parameters Impacting the Crystal Formation in Antisolvent Membrane-Assisted Crystallization.
    Chergaoui S; Debecker DP; Leyssens T; Luis P
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction.
    Tona RM; McDonald TAO; Akhavein N; Larkin JD; Lai D
    Lab Chip; 2019 Jun; 19(12):2127-2137. PubMed ID: 31114833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process.
    Kim MS; Song HS; Park HJ; Hwang SJ
    Chem Pharm Bull (Tokyo); 2012; 60(4):543-7. PubMed ID: 22466739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of long-acting injectable suspensions by continuous antisolvent crystallization: An integrated bottom-up process.
    Nandi S; Padrela L; Tajber L; Collas A
    Int J Pharm; 2023 Dec; 648():123550. PubMed ID: 37890647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer.
    Hansen J; Kleinebudde P
    Pharmaceutics; 2022 Jun; 14(6):. PubMed ID: 35745799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: Anti-solvent crystallization.
    Hussain MN; Jordens J; John JJ; Braeken L; Van Gerven T
    Ultrason Sonochem; 2019 Dec; 59():104743. PubMed ID: 31479884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisolvent membrane crystallization of pharmaceutical compounds.
    Di Profio G; Stabile C; Caridi A; Curcio E; Drioli E
    J Pharm Sci; 2009 Dec; 98(12):4902-13. PubMed ID: 19655372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of feedback control and in situ milling to improve particle size and shape in the crystallization of a slow growing needle-like active pharmaceutical ingredient.
    Yang Y; Pal K; Koswara A; Sun Q; Zhang Y; Quon J; McKeown R; Goss C; Nagy ZK
    Int J Pharm; 2017 Nov; 533(1):49-61. PubMed ID: 28935256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer Aided Design of Solvent Blends for Hybrid Cooling and Antisolvent Crystallization of Active Pharmaceutical Ingredients.
    Watson OL; Jonuzaj S; McGinty J; Sefcik J; Galindo A; Jackson G; Adjiman CS
    Org Process Res Dev; 2021 May; 25(5):1123-1142. PubMed ID: 34295139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted solution crystallization of fotagliptin benzoate: Process intensification and crystal product optimization.
    Fang L; Gao Z; Wu S; Jia S; Wang J; Rohani S; Gong J
    Ultrason Sonochem; 2021 Aug; 76():105634. PubMed ID: 34218067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives.
    Kumar R; Thakur AK; Banerjee N; Kumar A; Gaurav GK; Arya RK
    Drug Deliv Transl Res; 2023 Feb; 13(2):400-418. PubMed ID: 35953765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro dissolution enhancement of micronized l-nimodipine by antisolvent re-crystallization from its crystal form H.
    Zu Y; Li N; Zhao X; Li Y; Ge Y; Wang W; Wang K; Liu Y
    Int J Pharm; 2014 Apr; 464(1-2):1-9. PubMed ID: 24456674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.