BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36085305)

  • 1. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO
    Wang S; Zhang D; Wang W; Zhong J; Feng K; Wu Z; Du B; He J; Li Z; He L; Sun W; Yang D; Ozin GA
    Nat Commun; 2022 Sep; 13(1):5305. PubMed ID: 36085305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological upcycling of nickel and sulfate as electrocatalyst from electroplating wastewater.
    Fu XZ; Yang YR; Liu T; Guo ZY; Li CX; Li HY; Cui KP; Li WW
    Water Res; 2024 Feb; 250():121063. PubMed ID: 38171176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Thermal Management with Selective Metamaterial Absorber for Boosting Photothermal CO
    Liu S; Wang X; Chen Y; Li Y; Wei Y; Shao T; Ma J; Jiang W; Xu J; Dong Y; Wang C; Liu H; Gao C; Xiong Y
    Adv Mater; 2024 May; 36(21):e2311957. PubMed ID: 38324747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO
    Wu Z; Li C; Li Z; Feng K; Cai M; Zhang D; Wang S; Chu M; Zhang C; Shen J; Huang Z; Xiao Y; Ozin GA; Zhang X; He L
    ACS Nano; 2021 Mar; 15(3):5696-5705. PubMed ID: 33624496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO
    Hou H; Xu S; Ding S; Lin W; Yu Q; Zhang J; Qian G
    Sci Total Environ; 2022 Sep; 838(Pt 2):156032. PubMed ID: 35597356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.
    Zhang J; Zhang J; Xu Y; Su H; Li X; Zhou JZ; Qian G; Li L; Xu ZP
    Environ Sci Technol; 2014 Oct; 48(19):11497-503. PubMed ID: 25191790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal Catalytic CO
    Zhu Z; Hu X; An X; Xiao M; Zhang L; Li C; He L
    Chem Asian J; 2022 Dec; 17(24):e202200993. PubMed ID: 36323636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sinter-resistant catalytic system based on ultra-small Ni-Cu nanoparticles encapsulated in Ca-SiO
    Dai R; Zheng Z; Lian C; Shi K; Wu X; An X; Xie X
    Nanoscale; 2020 Aug; 12(31):16605-16616. PubMed ID: 32756665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar-Driven CO
    Wang H; Fu S; Shang B; Jeon S; Zhong Y; Harmon NJ; Choi C; Stach EA; Wang H
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305251. PubMed ID: 37235523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable valorization of styrofoam and CO
    Choi D; Jung S; Tsang YF; Song H; Moon DH; Kwon EE
    Sci Total Environ; 2022 Aug; 834():155384. PubMed ID: 35452735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Functional upcycling" of polymer waste towards the design of new materials.
    Guselnikova O; Semyonov O; Sviridova E; Gulyaev R; Gorbunova A; Kogolev D; Trelin A; Yamauchi Y; Boukherroub R; Postnikov P
    Chem Soc Rev; 2023 Jul; 52(14):4755-4832. PubMed ID: 37403690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Dispersed Ni Catalyst on Metal-Organic Framework-Derived Porous Hydrous Zirconia for CO
    Zeng L; Wang Y; Li Z; Song Y; Zhang J; Wang J; He X; Wang C; Lin W
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17436-17442. PubMed ID: 32195562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄.
    Li Z; Kathiraser Y; Ashok J; Oemar U; Kawi S
    Langmuir; 2014 Dec; 30(48):14694-705. PubMed ID: 25397692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the Structure-function Relationship of the "nano-greenhouse effect" towards Optimized Supra-photothermal Catalysis.
    Zhong B; Cai M; Liu S; He J; Wang J; Feng K; Tolstoy VP; Jiang L; Li C; An X; He L
    Chem Asian J; 2024 Mar; 19(5):e202301077. PubMed ID: 38153206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally stable core-shell Ni/nanorod-CeO
    Zhu S; Lian X; Fan T; Chen Z; Dong Y; Weng W; Yi X; Fang W
    Nanoscale; 2018 Jul; 10(29):14031-14038. PubMed ID: 29995024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An air-stable, reusable Ni@Ni(OH)
    Fu XP; Peres L; Esvan J; Amiens C; Philippot K; Yan N
    Nanoscale; 2021 May; 13(19):8931-8939. PubMed ID: 33956009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Kim JH; Jung S; Park YK; Kwon EE
    J Hazard Mater; 2020 Sep; 396():122637. PubMed ID: 32304851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonic-induced Photothermal Catalysis of CO
    Wang Y; Zhang X; Chang K; Zhao Z; Huang J; Kuang Q
    Chemistry; 2022 Mar; 28(16):e202104514. PubMed ID: 35118722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance light-driven heterogeneous CO
    Xu YF; Duchesne PN; Wang L; Tavasoli A; Ali FM; Xia M; Liao JF; Kuang DB; Ozin GA
    Nat Commun; 2020 Oct; 11(1):5149. PubMed ID: 33051460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.