These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36085705)

  • 1. Are Gyroscopes an Added Value in Leave-One-Subject-Out Activity Recognition with IMUs?
    Shang M; De Raedt W; Varon C; Vanrumste B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2399-2402. PubMed ID: 36085705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People.
    Meng L; Zhang A; Chen C; Wang X; Jiang X; Tao L; Fan J; Wu X; Dai C; Zhang Y; Vanrumste B; Tamura T; Chen W
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Activity Recognition Based on Embedded Sensor Data Fusion for the Internet of Healthcare Things.
    Issa ME; Helmi AM; Al-Qaness MAA; Dahou A; Abd Elaziz M; Damaševičius R
    Healthcare (Basel); 2022 Jun; 10(6):. PubMed ID: 35742136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Impact of Sensors and Feature Selection in Smart-Insole-Based Human Activity Recognition.
    D'Arco L; Wang H; Zheng H
    Methods Protoc; 2022 May; 5(3):. PubMed ID: 35736546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Activity Recognition Based on Residual Network and BiLSTM.
    Li Y; Wang L
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HARTH: A Human Activity Recognition Dataset for Machine Learning.
    Logacjov A; Bach K; Kongsvold A; Bårdstu HB; Mork PJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning based canine posture estimation using inertial data.
    Marcato M; Tedesco S; O'Mahony C; O'Flynn B; Galvin P
    PLoS One; 2023; 18(6):e0286311. PubMed ID: 37342986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification accuracies of physical activities using smartphone motion sensors.
    Wu W; Dasgupta S; Ramirez EE; Peterson C; Norman GJ
    J Med Internet Res; 2012 Oct; 14(5):e130. PubMed ID: 23041431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dataset of inertial measurements of smartphones and smartwatches for human activity recognition.
    Matey-Sanz M; Casteleyn S; Granell C
    Data Brief; 2023 Dec; 51():109809. PubMed ID: 38075620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity.
    Khan D; Al Mudawi N; Abdelhaq M; Alazeb A; Alotaibi SS; Algarni A; Jalal A
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring.
    Moccia S; Solbiati S; Khornegah M; Bossi FF; Caiani EG
    Comput Methods Programs Biomed; 2022 Jun; 219():106753. PubMed ID: 35338885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems.
    Jalal A; Quaid MAK; Tahir SBUD; Kim K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.