These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36085779)

  • 1. Towards Naturalistic Speech Decoding from Intracranial Brain Data.
    Berezutskaya J; Ambrogioni L; Ramsey NF; van Gerven MAJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3100-3104. PubMed ID: 36085779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-Computer Interface: Applications to Speech Decoding and Synthesis to Augment Communication.
    Luo S; Rabbani Q; Crone NE
    Neurotherapeutics; 2022 Jan; 19(1):263-273. PubMed ID: 35099768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Speech from Single Trial MEG Signals Using Convolutional Neural Networks and Transfer Learning.
    Dash D; Ferrari P; Heitzman D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5531-5535. PubMed ID: 31947107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards reconstructing intelligible speech from the human auditory cortex.
    Akbari H; Khalighinejad B; Herrero JL; Mehta AD; Mesgarani N
    Sci Rep; 2019 Jan; 9(1):874. PubMed ID: 30696881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain2Char: a deep architecture for decoding text from brain recordings.
    Sun P; Anumanchipalli GK; Chang EF
    J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33142282
    [No Abstract]   [Full Text] [Related]  

  • 6. Speech Synthesis from Stereotactic EEG using an Electrode Shaft Dependent Multi-Input Convolutional Neural Network Approach.
    Angrick M; Ottenhoff M; Goulis S; Colon AJ; Wagner L; Krusienski DJ; Kubben PL; Schultz T; Herff C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6045-6048. PubMed ID: 34892495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding speech using the timing of neural signal modulation.
    Jiang W; Pailla T; Dichter B; Chang EF; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1532-1535. PubMed ID: 28268618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
    Rabbani Q; Milsap G; Crone NE
    Neurotherapeutics; 2019 Jan; 16(1):144-165. PubMed ID: 30617653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bimodal Deep Learning Architecture for EEG-fNIRS Decoding of Overt and Imagined Speech.
    Cooney C; Folli R; Coyle D
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1983-1994. PubMed ID: 34874850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key considerations in designing a speech brain-computer interface.
    Bocquelet F; Hueber T; Girin L; Chabardès S; Yvert B
    J Physiol Paris; 2016 Nov; 110(4 Pt A):392-401. PubMed ID: 28756027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of prior pronunciations on sensorimotor cortex activity patterns during vowel production.
    Salari E; Freudenburg ZV; Vansteensel MJ; Ramsey NF
    J Neural Eng; 2018 Dec; 15(6):066025. PubMed ID: 30238924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding continuous kinetic information of grasp from stereo-electroencephalographic (SEEG) recordings.
    Wu X; Li G; Jiang S; Wellington S; Liu S; Wu Z; Metcalfe B; Chen L; Zhang D
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35395645
    [No Abstract]   [Full Text] [Related]  

  • 13. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings.
    Li G; Jiang S; Meng J; Chai G; Wu Z; Fan Z; Hu J; Sheng X; Zhang D; Chen L; Zhu X
    Neuroimage; 2022 Apr; 250():118969. PubMed ID: 35124225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-performance speech neuroprosthesis.
    Willett FR; Kunz E; Fan C; Avansino D; Wilson G; Choi EY; Kamdar F; Hochberg LRH; Druckmann S; Shenoy K; Henderson J
    bioRxiv; 2023 Apr; ():. PubMed ID: 36711591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities, pitfalls and trade-offs in designing protocols for measuring the neural correlates of speech.
    Cooney C; Folli R; Coyle D
    Neurosci Biobehav Rev; 2022 Sep; 140():104783. PubMed ID: 35907491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust decoding of the speech envelope from EEG recordings through deep neural networks.
    Thornton M; Mandic D; Reichenbach T
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35709698
    [No Abstract]   [Full Text] [Related]  

  • 19. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals.
    Dash D; Ferrari P; Dutta S; Wang J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus.
    Wilson GH; Stavisky SD; Willett FR; Avansino DT; Kelemen JN; Hochberg LR; Henderson JM; Druckmann S; Shenoy KV
    J Neural Eng; 2020 Nov; 17(6):066007. PubMed ID: 33236720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.