These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 36085839)
1. Prediction of Human Induced Pluripotent Stem Cell Formation Based on Deep Learning Analyses Using Time-lapse Brightfield Microscopy Images. Chu SL; Sudo K; Abe K; Yokota H; Nakamura Y; Liou GT; Tsai MD Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2029-2032. PubMed ID: 36085839 [TBL] [Abstract][Full Text] [Related]
2. Human induced pluripotent stem cell formation and morphology prediction during reprogramming with time-lapse bright-field microscopy images using deep learning methods. Chu SL; Sudo K; Yokota H; Abe K; Nakamura Y; Tsai MD Comput Methods Programs Biomed; 2023 Feb; 229():107264. PubMed ID: 36473419 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for quantifying spatial patterning and formation process of early differentiated human-induced pluripotent stem cells with micropattern images. Chu SL; Abe K; Yokota H; Cho D; Hayashi Y; Tsai MD J Microsc; 2024 Oct; 296(1):79-93. PubMed ID: 38994744 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Analyses for Early Tempo-spatial Patterning of Differentiated Human Induced Pluripotent Stem Cells on Micropatterns using Time-lapse Bright-field Microscopy Images. Chu SL; Abe K; Lin KT; Yokota H; Cho D; Tsai MD Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082741 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status. Piotrowski T; Rippel O; Elanzew A; Nießing B; Stucken S; Jung S; König N; Haupt S; Stappert L; Brüstle O; Schmitt R; Jonas S Comput Biol Med; 2021 Feb; 129():104172. PubMed ID: 33352307 [TBL] [Abstract][Full Text] [Related]
6. Human Induced Pluripotent Stem Cell Reprogramming Prediction in Microscopy Images using LSTM based RNN. Chang YH; Abe K; Yokota H; Sudo K; Nakamura Y; Chu SL; Hsu CY; Tsai MD Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2416-2419. PubMed ID: 31946386 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes. Orita K; Sawada K; Koyama R; Ikegaya Y J Pharmacol Sci; 2019 Aug; 140(4):313-316. PubMed ID: 31113731 [TBL] [Abstract][Full Text] [Related]
8. Role of cell-secreted extracellular matrix formation in aggregate formation and stability of human induced pluripotent stem cells in suspension culture. Kim MH; Takeuchi K; Kino-Oka M J Biosci Bioeng; 2019 Mar; 127(3):372-380. PubMed ID: 30249415 [TBL] [Abstract][Full Text] [Related]
9. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture. Tesarova L; Simara P; Stejskal S; Koutna I PLoS One; 2016; 11(6):e0157974. PubMed ID: 27336948 [TBL] [Abstract][Full Text] [Related]
10. Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency. Polanco JC; Ho MS; Wang B; Zhou Q; Wolvetang E; Mason E; Wells CA; Kolle G; Grimmond SM; Bertoncello I; O'Brien C; Laslett AL Stem Cells; 2013 Aug; 31(8):1498-510. PubMed ID: 23728894 [TBL] [Abstract][Full Text] [Related]
11. DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy. Zargari A; Lodewijk GA; Mashhadi N; Cook N; Neudorf CW; Araghbidikashani K; Hays R; Kozuki S; Rubio S; Hrabeta-Robinson E; Brooks A; Hinck L; Shariati SA Cell Rep Methods; 2023 Jun; 3(6):100500. PubMed ID: 37426758 [TBL] [Abstract][Full Text] [Related]
12. Reprogramming of bone marrow derived mesenchymal stromal cells to human induced pluripotent stem cells from pediatric patients with hematological diseases using a commercial mRNA kit. Sfougataki I; Grafakos I; Varela I; Mitrakos A; Karagiannidou A; Tzannoudaki M; Poulou M; Mertzanian A; Roubelakis G M; Stefanaki K; Traeger-Synodinos J; Kanavakis E; Kitra V; Tzetis M; Goussetis E Blood Cells Mol Dis; 2019 May; 76():32-39. PubMed ID: 30709626 [TBL] [Abstract][Full Text] [Related]
13. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data. Huang B; Zheng S; Ma B; Yang Y; Zhang S; Jin L BMC Pregnancy Childbirth; 2022 Jan; 22(1):36. PubMed ID: 35034623 [TBL] [Abstract][Full Text] [Related]
14. Detection and localization of mouse induced pluripotent stem cell formation using time-lapse fluorescence microscopy images. Yuan-Hsiang Chang ; Yokota H; Abe K; Jung Hsien Liu ; Ming-Dar Tsai Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3914-3917. PubMed ID: 28269141 [TBL] [Abstract][Full Text] [Related]
15. Functional coculture of sympathetic neurons and cardiomyocytes derived from human-induced pluripotent stem cells. Winbo A; Ramanan S; Eugster E; Jovinge S; Skinner JR; Montgomery JM Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H927-H937. PubMed ID: 32822546 [TBL] [Abstract][Full Text] [Related]