These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36085874)

  • 1. Individuals with moderate to severe hand impairments may struggle to use EMG control for assistive devices.
    Meier TB; Brecheisen AR; Gandomi KY; Carvalho PA; Meier GR; Clancy EA; Fischer GS; Nycz CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2864-2869. PubMed ID: 36085874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Forearm sEMG Signals with IMU Sensors for Trajectory Planning and Control of Assistive Robotic Arm.
    Schabron B; Reust A; Desai J; Yihun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5274-5277. PubMed ID: 31947047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals.
    Gantenbein J; Ahmadizadeh C; Heeb O; Lambercy O; Menon C
    J Neuroeng Rehabil; 2023 Aug; 20(1):101. PubMed ID: 37537602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks.
    Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953
    [No Abstract]   [Full Text] [Related]  

  • 6. Decoding hand and wrist movement intention from chronic stroke survivors with hemiparesis using a user-friendly, wearable EMG-based neural interface.
    Meyers EC; Gabrieli D; Tacca N; Wengerd L; Darrow M; Schlink BR; Baumgart I; Friedenberg DA
    J Neuroeng Rehabil; 2024 Jan; 21(1):7. PubMed ID: 38218901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury.
    Yoo HJ; Lee S; Kim J; Park C; Lee B
    J Neuroeng Rehabil; 2019 Dec; 16(1):162. PubMed ID: 31888695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living.
    Schabron B; Desai J; Yihun Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement.
    Lieber J; Dittli J; Lambercy O; Gassert R; Meyer-Heim A; van Hedel HJA
    J Neuroeng Rehabil; 2022 Feb; 19(1):17. PubMed ID: 35148786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke.
    Zbytniewska M; Kanzler CM; Jordan L; Salzmann C; Liepert J; Lambercy O; Gassert R
    J Neuroeng Rehabil; 2021 Jul; 18(1):115. PubMed ID: 34271954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Contraction and Movement.
    Fonseca L; Tigra W; Navarro B; Guiraud D; Fattal C; Bó A; Fachin-Martins E; Leynaert V; Gélis A; Azevedo-Coste C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper limb impairment is associated with use of assistive devices and unemployment in multiple sclerosis.
    Marrie RA; Cutter GR; Tyry T; Cofield SS; Fox R; Salter A
    Mult Scler Relat Disord; 2017 Apr; 13():87-92. PubMed ID: 28427709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.
    Ambrosini E; Ferrante S; Tibiletti M; Schauer T; Klauer C; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4259-62. PubMed ID: 22255280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Mixed-Method Approach to Identify Needs and Requirements for Upper Limb Assistive Technology for Persons after Stroke.
    Tanczak N; Ranzani R; Meyer JT; Devittori G; Califfi A; Dinacci D; Gassert R; Lambercy O; Kanzler CM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection.
    Castiblanco JC; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost transradial prosthesis controlled by the intention of muscular contraction.
    Prakash A; Sharma S
    Phys Eng Sci Med; 2021 Mar; 44(1):229-241. PubMed ID: 33469856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.