BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36085896)

  • 21. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Information extraction from free text for aiding transdiagnostic psychiatry: constructing NLP pipelines tailored to clinicians' needs.
    Turner RJ; Coenen F; Roelofs F; Hagoort K; Härmä A; Grünwald PD; Velders FP; Scheepers FE
    BMC Psychiatry; 2022 Jun; 22(1):407. PubMed ID: 35715745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting Opioid-Related Aberrant Behavior using Natural Language Processing.
    Lingeman JM; Wang P; Becker W; Yu H
    AMIA Annu Symp Proc; 2017; 2017():1179-1185. PubMed ID: 29854186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization.
    Brown AD; Kachura JR
    J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision.
    Shen Z; Schutte D; Yi Y; Bompelli A; Yu F; Wang Y; Zhang R
    BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 1):88. PubMed ID: 35799294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients.
    Shah RF; Bini S; Vail T
    Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer.
    Hoogendoorn M; Szolovits P; Moons LMG; Numans ME
    Artif Intell Med; 2016 May; 69():53-61. PubMed ID: 27085847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using natural language processing of clinical text to enhance identification of opioid-related overdoses in electronic health records data.
    Hazlehurst B; Green CA; Perrin NA; Brandes J; Carrell DS; Baer A; DeVeaugh-Geiss A; Coplan PM
    Pharmacoepidemiol Drug Saf; 2019 Aug; 28(8):1143-1151. PubMed ID: 31218780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining NLP and Machine Learning for Differential Diagnosis of COPD Exacerbation Using Emergency Room Data.
    Shah-Mohammadi F; Finkelstein J
    Stud Health Technol Inform; 2023 Jun; 305():525-528. PubMed ID: 37387083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning for phenotyping opioid overdose events.
    Badger J; LaRose E; Mayer J; Bashiri F; Page D; Peissig P
    J Biomed Inform; 2019 Jun; 94():103185. PubMed ID: 31028874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing Risk Assessment in Patients Receiving Chronic Opioid Analgesic Therapy Using Natural Language Processing.
    Haller IV; Renier CM; Juusola M; Hitz P; Steffen W; Asmus MJ; Craig T; Mardekian J; Masters ET; Elliott TE
    Pain Med; 2017 Oct; 18(10):1952-1960. PubMed ID: 28034982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Discharge Disposition Following Meningioma Resection Using a Multi-Institutional Natural Language Processing Model.
    Muhlestein WE; Monsour MA; Friedman GN; Zinzuwadia A; Zachariah MA; Coumans JV; Carter BS; Chambless LB
    Neurosurgery; 2021 Mar; 88(4):838-845. PubMed ID: 33483747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.