These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36085912)
1. Deep learning based non-contact physiological monitoring in Neonatal Intensive Care Unit. Sahoo NN; Murugesan B; Das A; Karthik S; Ram K; Leonhardt S; Joseph J; Sivaprakasam M Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1327-1330. PubMed ID: 36085912 [TBL] [Abstract][Full Text] [Related]
2. Non-Contact Heart Rate Monitoring in Neonatal Intensive Care Unit using RGB Camera. Chen Q; Jiang X; Liu X; Lu C; Wang L; Chen W Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5822-5825. PubMed ID: 33019298 [TBL] [Abstract][Full Text] [Related]
3. Continuous non-contact vital sign monitoring in neonatal intensive care unit. Villarroel M; Guazzi A; Jorge J; Davis S; Watkinson P; Green G; Shenvi A; McCormick K; Tarassenko L Healthc Technol Lett; 2014 Sep; 1(3):87-91. PubMed ID: 26609384 [TBL] [Abstract][Full Text] [Related]
4. Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates. Maurya L; Zwiggelaar R; Chawla D; Mahapatra P J Clin Monit Comput; 2023 Jun; 37(3):815-828. PubMed ID: 36463541 [TBL] [Abstract][Full Text] [Related]
5. Fast body part segmentation and tracking of neonatal video data using deep learning. Antink CH; Ferreira JCM; Paul M; Lyra S; Heimann K; Karthik S; Joseph J; Jayaraman K; Orlikowsky T; Sivaprakasam M; Leonhardt S Med Biol Eng Comput; 2020 Dec; 58(12):3049-3061. PubMed ID: 33094430 [TBL] [Abstract][Full Text] [Related]
6. Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning. Chaichulee S; Villarroel M; Jorge J; Arteta C; McCormick K; Zisserman A; Tarassenko L Physiol Meas; 2019 Dec; 40(11):115001. PubMed ID: 31661680 [TBL] [Abstract][Full Text] [Related]
7. Parents' experiences of transition when their infants are discharged from the Neonatal Intensive Care Unit: a systematic review protocol. Aagaard H; Uhrenfeldt L; Spliid M; Fegran L JBI Database System Rev Implement Rep; 2015 Oct; 13(10):123-32. PubMed ID: 26571288 [TBL] [Abstract][Full Text] [Related]
8. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
9. Device for remote and realtime monitoring of neonatal vital signs in neonatal intensive care unit using internet of things: proof-of-concept study. Nemomssa HD; Alemneh TB J Clin Monit Comput; 2023 Apr; 37(2):585-592. PubMed ID: 36348160 [TBL] [Abstract][Full Text] [Related]
10. Towards continuous monitoring of pulse rate in neonatal intensive care unit with a webcam. Mestha LK; Kyal S; Xu B; Lewis LE; Kumar V Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3817-20. PubMed ID: 25570823 [TBL] [Abstract][Full Text] [Related]
11. Contactless radar-based breathing monitoring of premature infants in the neonatal intensive care unit. Beltrão G; Stutz R; Hornberger F; Martins WA; Tatarinov D; Alaee-Kerahroodi M; Lindner U; Stock L; Kaiser E; Goedicke-Fritz S; Schroeder U; R BSM; Zemlin M Sci Rep; 2022 Mar; 12(1):5150. PubMed ID: 35338172 [TBL] [Abstract][Full Text] [Related]
12. A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods. Ni A; Azarang A; Kehtarnavaz N Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071736 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of non-contact cardiorespiratory monitoring using impulse-radio ultra-wideband radar in the neonatal intensive care unit. Lee WH; Lee Y; Na JY; Kim SH; Lee HJ; Lim YH; Cho SH; Cho SH; Park HK PLoS One; 2020; 15(12):e0243939. PubMed ID: 33370375 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda. Cheng CH; Wong KL; Chin JW; Chan TT; So RHY Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577503 [TBL] [Abstract][Full Text] [Related]
15. Estimation of Heart Rate Directly from ECG Spectrogram in Neonate Intensive Care Units. Cabrera-Quiros L; Varisco G; Zhan Z; Long X; Andriessen P; Cottaar EJE; van Pul C Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():320-323. PubMed ID: 33017993 [TBL] [Abstract][Full Text] [Related]
16. Reduced nosocomial infection rate in a neonatal intensive care unit during a 4-year surveillance period. Chen YC; Lin CF; Rehn YF; Chen JC; Chen PY; Chen CH; Wang TM; Huang FL J Chin Med Assoc; 2017 Jul; 80(7):427-431. PubMed ID: 28479017 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit. Singh JK; Kamlin CO; Morley CJ; O'Donnell CP; Donath SM; Davis PG J Paediatr Child Health; 2008 May; 44(5):273-5. PubMed ID: 17999668 [TBL] [Abstract][Full Text] [Related]
18. Development of an Interactive Dashboard to Analyse Physiological Signals in the Neonatal Intensive Care Unit. Lauw CJ; Rahman J; Brankovic A; Tracy M; Khanna S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082857 [TBL] [Abstract][Full Text] [Related]
19. The use of wireless sensors in the neonatal intensive care unit: a study protocol. Senechal E; Radeschi D; Tao L; Lv S; Jeanne E; Kearney R; Shalish W; Sant Anna G PeerJ; 2023; 11():e15578. PubMed ID: 37397010 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Caffeine Regimens: A Machine Learning Approach for Enhanced Clinical Decision Making at a Neonatal Intensive Care Unit (NICU). Shirwaikar RD Crit Rev Biomed Eng; 2018; 46(2):93-115. PubMed ID: 30055527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]