BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 36085923)

  • 1. Design of a 6-DoF Cost-effective Differential-drive based Robotic system for Upper-Limb Stroke Rehabilitation.
    Jonna P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1423-1427. PubMed ID: 36085923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prototype development of bilateral arm mirror-like-robotic rehabilitation device for acute stroke patients.
    Klinkwan P; Kongmaroeng C; Muengtaweepongsa S; Limtrakarn W
    Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37116477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HERCULES: A Three Degree-of-Freedom Pneumatic Upper Limb Exoskeleton for Stroke Rehabilitation
    Burns M; Zavoda Z; Nataraj R; Pochiraju K; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4959-4962. PubMed ID: 33019100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients.
    Valayil TP; Augustine RS
    Acta Bioeng Biomech; 2021; 23(3):175-189. PubMed ID: 34978313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGREE: an upper-limb robotic platform for personalized rehabilitation, concept and clinical study design.
    Gasperina SD; Longatelli V; Panzenbeck M; Luciani B; Morosini A; Piantoni A; Tropea P; Braghin F; Pedrocchi A; Gandolla M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Home-based upper limb stroke rehabilitation mechatronics: challenges and opportunities.
    Forbrigger S; DePaul VG; Davies TC; Morin E; Hashtrudi-Zaad K
    Biomed Eng Online; 2023 Jul; 22(1):67. PubMed ID: 37424017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading.
    Ellis MD; Lan Y; Yao J; Dewald JP
    J Neuroeng Rehabil; 2016 Oct; 13(1):95. PubMed ID: 27794362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training.
    Perry JC; Oblak J; Jung JH; Cikajlo I; Veneman JF; Goljar N; Bizovičar N; Matjačić Z; Keller T
    J Rehabil Res Dev; 2011; 48(4):317-33. PubMed ID: 21674386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Evaluation of Passive Shoulder Joint Tracking Module for Upper-Limb Rehabilitation Robots.
    Lee KS; Park JH; Beom J; Park HS
    Front Neurorobot; 2018; 12():38. PubMed ID: 30100871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.