These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 3608595)
1. Control of pacemaker rate by impedance-based respiratory minute ventilation. Alt E; Heinz M; Hirgstetter C; Emslander HP; Daum S; Blömer H Chest; 1987 Aug; 92(2):247-52. PubMed ID: 3608595 [TBL] [Abstract][Full Text] [Related]
2. Rate-modulated cardiac pacing based on transthoracic impedance measurements of minute ventilation: correlation with exercise gas exchange. Kay GN; Bubien RS; Epstein AE; Plumb VJ J Am Coll Cardiol; 1989 Nov; 14(5):1283-9. PubMed ID: 2808984 [TBL] [Abstract][Full Text] [Related]
3. Rate responsive pacing using a minute ventilation sensor. Mond H; Strathmore N; Kertes P; Hunt D; Baker G Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):1866-74. PubMed ID: 2463560 [TBL] [Abstract][Full Text] [Related]
4. Comparison of impedance minute ventilation and direct measured minute ventilation in a rate adaptive pacemaker. Simon R; Ni Q; Willems R; Hartley JW; Daum DR; Lang D; Ward K; Gill J Pacing Clin Electrophysiol; 2003 Nov; 26(11):2127-33. PubMed ID: 14622315 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load. Miyamoto Y; Hiura T; Tamura T; Nakamura T; Higuchi J; Mikami T J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1198-208. PubMed ID: 7096144 [TBL] [Abstract][Full Text] [Related]
6. Correlation of impedance minute ventilation with measured minute ventilation in a rate responsive pacemaker. Cole CR; Jensen DN; Cho Y; Portzline G; Candinas R; Duru F; Adler S; Nelson L; Condie C; Wilkoff BL Pacing Clin Electrophysiol; 2001 Jun; 24(6):989-93. PubMed ID: 11449596 [TBL] [Abstract][Full Text] [Related]
7. Behavior of a respiratory driven pacemaker and direct respiratory measurements. Jordaens L; Berghmans L; Van Wassenhove E; Clement DL Pacing Clin Electrophysiol; 1989 Oct; 12(10):1600-6. PubMed ID: 2477815 [TBL] [Abstract][Full Text] [Related]
8. Rate responsive pacing using transthoracic impedance minute ventilation sensors: a multicenter study on calibration stability. Duru F; Cho Y; Wilkoff BL; Cole CR; Adler S; Jensen DN; Strobel U; Radicke D; Candinas R Pacing Clin Electrophysiol; 2002 Dec; 25(12):1679-84. PubMed ID: 12520667 [TBL] [Abstract][Full Text] [Related]
9. Age and sex related changes in heart rate to ventilation coupling: implications for rate adaptive pacemaker algorithms. Rickli H; MacCarter DJ; Maire R; Amann FW; Candinas R Pacing Clin Electrophysiol; 1997 Jan; 20(1 Pt 1):104-11. PubMed ID: 9121954 [TBL] [Abstract][Full Text] [Related]
10. Influence of posture, breathing pattern, and type of exercise on minute ventilation estimation by a pacemaker transthoracic impedance sensor. Duru F; Radicke D; Wilkoff BL; Cole CR; Adler S; Nelson L; Jensen DN; Strobel U; Portzline G; Candinas R Pacing Clin Electrophysiol; 2000 Nov; 23(11 Pt 2):1767-71. PubMed ID: 11139920 [TBL] [Abstract][Full Text] [Related]
11. Correlation of heart rate with an intravenous, impedance, respiratory sensor. Valenta H; Nappholz T; Maloney J; Simmons T; Sandra FA; McElroy P Biomed Sci Instrum; 1986; 22():7-12. PubMed ID: 3708082 [No Abstract] [Full Text] [Related]
12. Physiologically responsive cardiac pacemakers. A role for electrical impedance? Van de Water JM; Bhark P; Lee FK Chest; 1987 Aug; 92(2):194-5. PubMed ID: 3608588 [No Abstract] [Full Text] [Related]
13. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans. Sin PY; Webber MR; Galletly DC; Ainslie PN; Brown SJ; Willie CK; Sasse A; Larsen PD; Tzeng YC Exp Physiol; 2010 Jul; 95(7):788-97. PubMed ID: 20382666 [TBL] [Abstract][Full Text] [Related]
14. Tidal volume and minute ventilation parameters derived from pacemaker impedance measurements can predict experimental heart failure development. Lefkov S; de Voir C; Müssig D; Tkebuchava T; Lian J; Orlov MV Pacing Clin Electrophysiol; 2014 Feb; 37(2):215-24. PubMed ID: 24033775 [TBL] [Abstract][Full Text] [Related]
15. A comparison of different bedside techniques to determine endotracheal tube position in a neonatal piglet model. Schmölzer GM; Bhatia R; Davis PG; Tingay DG Pediatr Pulmonol; 2013 Feb; 48(2):138-45. PubMed ID: 22615185 [TBL] [Abstract][Full Text] [Related]
16. Assessment of heart rate as a predictor of ventilation. Samet JM; Lambert WE; James DS; Mermier CM; Chick TW Res Rep Health Eff Inst; 1993 May; (59):19-55; discussion 57-69. PubMed ID: 8216970 [TBL] [Abstract][Full Text] [Related]
17. Physiologic correlates of the heart rate response to upright isotonic exercise: relevance to rate-responsive pacemakers. McElroy PA; Janicki JS; Weber KT J Am Coll Cardiol; 1988 Jan; 11(1):94-9. PubMed ID: 3335710 [TBL] [Abstract][Full Text] [Related]
18. Thoracic bioimpedance as a basis for pacing control. Min M; Parve T; Kink A Ann N Y Acad Sci; 1999 Apr; 873():155-66. PubMed ID: 10372164 [TBL] [Abstract][Full Text] [Related]
19. Cardiorespiratory Mechanical Simulator for In Vitro Testing of Impedance Minute Ventilation Sensors in Cardiac Pacemakers. Marcelli E; Cercenelli L ASAIO J; 2016; 62(2):150-6. PubMed ID: 26501915 [TBL] [Abstract][Full Text] [Related]