BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36086006)

  • 1. Toward FBG-Sensorized Needle Shape Detection in Real Tissue Insertions.
    Kim MJ; Lezcano DA; Kim JS; Iordachita II
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4397-4401. PubMed ID: 36086006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lie-Group Theoretic Approach to Shape-Sensing Using FBG-Sensorized Needles Including Double-Layer Tissue and S-Shape Insertions.
    Lezcano DA; Iordachita II; Kim JS
    IEEE Sens J; 2022 Nov; 22(22):22232-22243. PubMed ID: 37216067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward FBG-Sensorized Needle Shape Prediction in Tissue Insertions.
    Lezcano DA; Kim MJ; Iordachita II; Kim JS
    Rep U S; 2022 Oct; 2022():3505-3511. PubMed ID: 36636257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches.
    Lezcano DA; Zhetpissov Y; Cheng A; Kim JS; Iordachita II
    ArXiv; 2023 Sep; ():. PubMed ID: 37731661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards human-controlled, real-time shape sensing based flexible needle steering for MRI-guided percutaneous therapies.
    Li M; Li G; Gonenc B; Duan X; Iordachita I
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27487833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory Generation of FBG-Sensorized Needles for Insertions into Multi-Layer Tissue.
    Lezcano DA; Iordachita II; Kim JS
    Proc IEEE Sens; 2020 Oct; 2020():. PubMed ID: 34149973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber Bragg gratings-based sensing for real-time needle tracking during MR-guided brachytherapy.
    Borot de Battisti M; Denis de Senneville B; Maenhout M; Lagendijk JJ; van Vulpen M; Hautvast G; Binnekamp D; Moerland MA
    Med Phys; 2016 Oct; 43(10):5288. PubMed ID: 27782713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic CT-guided out-of-plane needle insertion: comparison of angle accuracy with manual insertion in phantom and measurement of distance accuracy in animals.
    Komaki T; Hiraki T; Kamegawa T; Matsuno T; Sakurai J; Matsuura R; Yamaguchi T; Sasaki T; Mitsuhashi T; Okamoto S; Uka M; Matsui Y; Iguchi T; Gobara H; Kanazawa S
    Eur Radiol; 2020 Mar; 30(3):1342-1349. PubMed ID: 31773299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Automatic Robotic Calibration System for Flexible Needles with FBG Sensors.
    Song K; Lezcano DA; Sun G; Kim JS; Iordachita II
    Int Symp Med Robot; 2021 Nov; 2021():. PubMed ID: 35187545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized needle shape reconstruction using experimentally based strain sensors positioning.
    Schaefer PL; Chagnon G; Moreau-Gaudry A
    Med Biol Eng Comput; 2019 Sep; 57(9):1901-1916. PubMed ID: 31243623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-Assisted Needle Insertion for CT-Guided Puncture: Experimental Study with a Phantom and Animals.
    Chen X; Yan Y; Li A; Wang T; Wang Y
    Cardiovasc Intervent Radiol; 2023 Jan; 46(1):128-135. PubMed ID: 36380153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting stages of needle penetration into tissues through force estimation at needle tip using fiber Bragg grating sensors.
    Kumar S; Shrikanth V; Amrutur B; Asokan S; Bobji MS
    J Biomed Opt; 2016 Dec; 21(12):127009. PubMed ID: 28036093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotically Driven CT-guided Needle Insertion: Preliminary Results in Phantom and Animal Experiments.
    Hiraki T; Kamegawa T; Matsuno T; Sakurai J; Kirita Y; Matsuura R; Yamaguchi T; Sasaki T; Mitsuhashi T; Komaki T; Masaoka Y; Matsui Y; Fujiwara H; Iguchi T; Gobara H; Kanazawa S
    Radiology; 2017 Nov; 285(2):454-461. PubMed ID: 28604237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
    Elayaperumal S; Plata JC; Holbrook AB; Park YL; Pauly KB; Daniel BL; Cutkosky MR
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2128-39. PubMed ID: 24968093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Feasibility of Using a Smartphone Magnetometer for Assisting Needle Placement.
    Zhao Z; Xu S; Wood BJ; Ren H; Tse ZTH
    Ann Biomed Eng; 2020 Apr; 48(4):1147-1156. PubMed ID: 31832931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Fiber -Based Needle Shape Sensing: Three-channel Single Core vs. Multicore Approaches.
    Cheng A; Lezcano DA; Kim JS; Iordachita II
    Int Symp Med Robot; 2023 Apr; 2023():. PubMed ID: 37292169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing.
    van de Berg NJ; Dankelman J; van den Dobbelsteen JJ
    Med Eng Phys; 2015 Jun; 37(6):617-22. PubMed ID: 25922213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating robot-assisted ultrasound tracking and 3D needle shape prediction for real-time tracking of the needle tip in needle steering procedures.
    Konh B; Padasdao B; Batsaikhan Z; Ko SY
    Int J Med Robot; 2021 Aug; 17(4):e2272. PubMed ID: 33951748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic Insertion of Various Ablation Needles Under Computed Tomography Guidance: Accuracy in Animal Experiments.
    Hiraki T; Matsuno T; Kamegawa T; Komaki T; Sakurai J; Matsuura R; Yamaguchi T; Sasaki T; Iguchi T; Matsui Y; Gobara H; Kanazawa S
    Eur J Radiol; 2018 Aug; 105():162-167. PubMed ID: 30017274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced sensors placement for accurate 3D needle shape reconstruction.
    Schaefer PL; Chagnon G; Moreau-Gaudry A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5132-5135. PubMed ID: 28269422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.