These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36086035)

  • 1. Deep Estimation of Speckle Statistics Parametric Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3907-3910. PubMed ID: 36086035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Scatterer Number Density Segmentation of Ultrasound Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1169-1180. PubMed ID: 35044911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Carotid Artery Plaque Components With Machine Learning Classification Using Homodyned-K Parametric Maps and Elastograms.
    Roy-Cardinal MH; Destrempes F; Soulez G; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):493-504. PubMed ID: 29994706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2697-2706. PubMed ID: 33900913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones.
    Li S; Zhou Z; Wu S; Wu W
    Ultrason Imaging; 2023 May; 45(3):119-135. PubMed ID: 36995065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallelized ultrasound homodyned-K imaging based on a generalized artificial neural network estimator.
    Wu X; Lv K; Wu S; Tai DI; Tsui PH; Zhou Z
    Ultrasonics; 2023 Jul; 132():106987. PubMed ID: 36958066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver Fibrosis Assessment Using Radiomics of Ultrasound Homodyned-K imaging Based on the Artificial Neural Network Estimator.
    Zhou Z; Zhang Z; Gao A; Tai DI; Wu S; Tsui PH
    Ultrason Imaging; 2022 Nov; 44(5-6):229-241. PubMed ID: 36017590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homodyned K-Distribution Parameter Estimation in Quantitative Ultrasound: Autoencoder and Bayesian Neural Network Approaches.
    Tehrani AKZ; Cloutier G; Tang A; Rosado-Mendez IM; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Mar; 71(3):354-365. PubMed ID: 38252581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pilot Study on Scatterer Density Classification of Ultrasound Images Using Deep Neural Networks.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2059-2062. PubMed ID: 33018410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation of the homodyned K distribution based on an artificial neural network for ultrasound tissue characterization.
    Zhou Z; Gao A; Wu W; Tai DI; Tseng JH; Wu S; Tsui PH
    Ultrasonics; 2021 Mar; 111():106308. PubMed ID: 33290957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Envelope Statistics Models for Quantitative Ultrasound Imaging and Tissue Characterization.
    Destrempes F; Cloutier G
    Adv Exp Med Biol; 2023; 1403():107-152. PubMed ID: 37495917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid QUS Radiomics: A Multimodal-Integrated Quantitative Ultrasound Radiomics for Assessing Ambulatory Function in Duchenne Muscular Dystrophy.
    Yan D; Li Q; Lin CW; Shieh JY; Weng WC; Tsui PH
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):835-845. PubMed ID: 37930927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-enabled quantitative ultrasound techniques for tissue differentiation.
    Thomson H; Yang S; Cochran S
    J Med Ultrason (2001); 2022 Oct; 49(4):517-528. PubMed ID: 35840774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization.
    Liu Y; Zhang Y; He B; Li Z; Lang X; Liang H; Chen J
    Ultrason Imaging; 2022 Jul; 44(4):142-160. PubMed ID: 35674146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes.
    Mamou J; Coron A; Oelze ML; Saegusa-Beecroft E; Hata M; Lee P; Machi J; Yanagihara E; Laugier P; Feleppa EJ
    Ultrasound Med Biol; 2011 Mar; 37(3):345-57. PubMed ID: 21316559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study on a Parameter Estimator for the Homodyned K Distribution Based on Table Search for Ultrasound Tissue Characterization.
    Liu Y; He B; Zhang Y; Lang X; Yao R; Pan L
    Ultrasound Med Biol; 2023 Apr; 49(4):970-981. PubMed ID: 36631331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Ultrasound Echogenicity Map from B-Mode Images Using Convolutional Neural Network.
    Shen CC; Yang JE
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of speckle in ultrasound images using fractional order statistics and the homodyned k-distribution.
    Prager RW; Gee AH; Treece GM; Berman LH
    Ultrasonics; 2002 May; 40(1-8):133-7. PubMed ID: 12159920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a convolutional neural network and quantitative ultrasound for diagnosis of fatty liver.
    Nguyen TN; Podkowa AS; Park TH; Miller RJ; Do MN; Oelze ML
    Ultrasound Med Biol; 2021 Mar; 47(3):556-568. PubMed ID: 33358553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Window-modulated compounding Nakagami imaging for ultrasound tissue characterization.
    Tsui PH; Ma HY; Zhou Z; Ho MC; Lee YH
    Ultrasonics; 2014 Aug; 54(6):1448-59. PubMed ID: 24835004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.