These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36086035)
21. Characterizing intra-tumor regions on quantitative ultrasound parametric images to predict breast cancer response to chemotherapy at pre-treatment. Taleghamar H; Moghadas-Dastjerdi H; Czarnota GJ; Sadeghi-Naini A Sci Rep; 2021 Jul; 11(1):14865. PubMed ID: 34290259 [TBL] [Abstract][Full Text] [Related]
22. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation. Lee H; Lee H; Hong H; Bae H; Lim JS; Kim J Med Phys; 2021 Sep; 48(9):5029-5046. PubMed ID: 34287951 [TBL] [Abstract][Full Text] [Related]
23. Hepatic steatosis assessment using ultrasound homodyned-K parametric imaging: the effects of estimators. Zhou Z; Zhang Q; Wu W; Lin YH; Tai DI; Tseng JH; Lin YR; Wu S; Tsui PH Quant Imaging Med Surg; 2019 Dec; 9(12):1932-1947. PubMed ID: 31929966 [TBL] [Abstract][Full Text] [Related]
24. Feasibility of Image Registration for Ultrasound-Guided Prostate Radiotherapy Based on Similarity Measurement by a Convolutional Neural Network. Zhu N; Najafi M; Han B; Hancock S; Hristov D Technol Cancer Res Treat; 2019 Jan; 18():1533033818821964. PubMed ID: 30803364 [TBL] [Abstract][Full Text] [Related]
25. A Study on the Effects of Depth-Dependent Power Loss on Speckle Statistics Estimation. Christensen A; Rosado-Mendez I; Hall TJ Ultrasound Med Biol; 2024 Dec; 50(12):1800-1811. PubMed ID: 39245608 [TBL] [Abstract][Full Text] [Related]
26. Unifying Concepts of Statistical and Spectral Quantitative Ultrasound Techniques. Destrempes F; Franceschini E; Yu FT; Cloutier G IEEE Trans Med Imaging; 2016 Feb; 35(2):488-500. PubMed ID: 26415165 [TBL] [Abstract][Full Text] [Related]
27. Value of homodyned K distribution in ultrasound parametric imaging of hepatic steatosis: An animal study. Zhou Z; Fang J; Cristea A; Lin YH; Tsai YW; Wan YL; Yeow KM; Ho MC; Tsui PH Ultrasonics; 2020 Feb; 101():106001. PubMed ID: 31505328 [TBL] [Abstract][Full Text] [Related]
28. Detection of microwave ablation coagulation areas using ultrasound Nakagami imaging based on Gaussian pyramid decomposition: A feasibility study. Li S; Tsui PH; Song S; Wu W; Zhou Z; Wu S Ultrasonics; 2022 Aug; 124():106758. PubMed ID: 35617777 [TBL] [Abstract][Full Text] [Related]
29. Quantitative ultrasound and machine learning for assessment of steatohepatitis in a rat model. Tang A; Destrempes F; Kazemirad S; Garcia-Duitama J; Nguyen BN; Cloutier G Eur Radiol; 2019 May; 29(5):2175-2184. PubMed ID: 30560362 [TBL] [Abstract][Full Text] [Related]
30. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound. Oelze ML; Mamou J IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):336-51. PubMed ID: 26761606 [TBL] [Abstract][Full Text] [Related]
31. Ultrasound window-modulated compounding Nakagami imaging: Resolution improvement and computational acceleration for liver characterization. Ma HY; Lin YH; Wang CY; Chen CN; Ho MC; Tsui PH Ultrasonics; 2016 Aug; 70():18-28. PubMed ID: 27125557 [TBL] [Abstract][Full Text] [Related]
32. Multiparametric Quantitative US Examination of Liver Fibrosis: A Feature-Engineering and Machine-Learning Based Analysis. Wen H; Zheng W; Li M; Li Q; Liu Q; Zhou J; Liu Z; Chen X IEEE J Biomed Health Inform; 2022 Feb; 26(2):715-726. PubMed ID: 34329172 [TBL] [Abstract][Full Text] [Related]
33. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS. Destrempes F; Porée J; Cloutier G SIAM J Imaging Sci; 2013 Aug; 6(3):1499-1530. PubMed ID: 24795788 [TBL] [Abstract][Full Text] [Related]
34. Deep learning of quantitative ultrasound multi-parametric images at pre-treatment to predict breast cancer response to chemotherapy. Taleghamar H; Jalalifar SA; Czarnota GJ; Sadeghi-Naini A Sci Rep; 2022 Feb; 12(1):2244. PubMed ID: 35145158 [TBL] [Abstract][Full Text] [Related]
35. Deep-learning-based direct inversion for material decomposition. Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942 [TBL] [Abstract][Full Text] [Related]
36. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging. Sanchez JR; Pocci D; Oelze ML IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2111-23. PubMed ID: 19942499 [TBL] [Abstract][Full Text] [Related]
37. Texture preservation and speckle reduction in poor optical coherence tomography using the convolutional neural network. Xu M; Tang C; Hao F; Chen M; Lei Z Med Image Anal; 2020 Aug; 64():101727. PubMed ID: 32497871 [TBL] [Abstract][Full Text] [Related]
38. A parametric imaging approach for the segmentation of ultrasound data. Davignon F; Deprez JF; Basset O Ultrasonics; 2005 Dec; 43(10):789-801. PubMed ID: 16054666 [TBL] [Abstract][Full Text] [Related]
39. Ultrasound parametric imaging of hepatic steatosis using the homodyned-K distribution: An animal study. Fang J; Zhou Z; Chang NF; Wan YL; Tsui PH Ultrasonics; 2018 Jul; 87():91-102. PubMed ID: 29476945 [TBL] [Abstract][Full Text] [Related]
40. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Ma G; Zhang Y; Zhao X; Wang T; Li H Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]