These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36086040)

  • 41. Learning from small data: Classifying sex from retinal images via deep learning.
    Berk A; Ozturan G; Delavari P; Maberley D; Yılmaz Ö; Oruc I
    PLoS One; 2023; 18(8):e0289211. PubMed ID: 37535591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy.
    Lo JE; Kang EY; Chen YN; Hsieh YT; Wang NK; Chen TC; Chen KJ; Wu WC; Hwang YS; Lo FS; Lai CC
    J Diabetes Res; 2021; 2021():2751695. PubMed ID: 35071603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems.
    Hacisoftaoglu RE; Karakaya M; Sallam AB
    Pattern Recognit Lett; 2020 Jul; 135():409-417. PubMed ID: 32704196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment.
    Rêgo S; Dutra-Medeiros M; Soares F; Monteiro-Soares M
    Ophthalmologica; 2021; 244(3):250-257. PubMed ID: 33120397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC).
    Das D; Biswas SK; Bandyopadhyay S
    Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Convolutional neural network-based sea lion optimization algorithm for the detection and classification of diabetic retinopathy.
    Hemanth SV; Alagarsamy S; Dhiliphan Rajkumar T
    Acta Diabetol; 2023 Oct; 60(10):1377-1389. PubMed ID: 37368025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.
    Alam MN; Yamashita R; Ramesh V; Prabhune T; Lim JI; Chan RVP; Hallak J; Leng T; Rubin D
    Sci Rep; 2023 Apr; 13(1):6047. PubMed ID: 37055475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.
    Tsiknakis N; Theodoropoulos D; Manikis G; Ktistakis E; Boutsora O; Berto A; Scarpa F; Scarpa A; Fotiadis DI; Marias K
    Comput Biol Med; 2021 Aug; 135():104599. PubMed ID: 34247130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep learning-based hemorrhage detection for diabetic retinopathy screening.
    Aziz T; Charoenlarpnopparut C; Mahapakulchai S
    Sci Rep; 2023 Jan; 13(1):1479. PubMed ID: 36707608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images.
    Wang X; Xu M; Zhang J; Jiang L; Li L; He M; Wang N; Liu H; Wang Z
    IEEE J Biomed Health Inform; 2022 May; 26(5):2216-2227. PubMed ID: 34648460
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach.
    Mirshahi R; Anvari P; Riazi-Esfahani H; Sardarinia M; Naseripour M; Falavarjani KG
    Sci Rep; 2021 Jan; 11(1):1031. PubMed ID: 33441825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic detection of rare pathologies in fundus photographs using few-shot learning.
    Quellec G; Lamard M; Conze PH; Massin P; Cochener B
    Med Image Anal; 2020 Apr; 61():101660. PubMed ID: 32028213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model.
    Santos C; Aguiar M; Welfer D; Belloni B
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software.
    Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q
    Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471
    [No Abstract]   [Full Text] [Related]  

  • 57. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features.
    Harangi B; Toth J; Baran A; Hajdu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2699-2702. PubMed ID: 31946452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs.
    Gunasekaran K; Pitchai R; Chaitanya GK; Selvaraj D; Annie Sheryl S; Almoallim HS; Alharbi SA; Raghavan SS; Tesemma BG
    Biomed Res Int; 2022; 2022():3163496. PubMed ID: 35711528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved Automatic Grading of Diabetic Retinopathy Using Deep Learning and Principal Component Analysis.
    Mohamed E; Elmohsen MA; Basha T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3898-3901. PubMed ID: 34892084
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Learning Techniques for Diabetic Retinopathy Detection.
    Qummar S; Khan FG; Shah S; Khan A; Din A; Gao J
    Curr Med Imaging; 2020; 16(10):1201-1213. PubMed ID: 32107999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.