These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36086142)

  • 21. Personalized Markerless Upper-Body Tracking with a Depth Camera and Wrist-Worn Inertial Measurement Units.
    Jatesiktat P; Anopas D; Ang WT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-6. PubMed ID: 30440294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of the Relative Orientation between Multiple Depth Cameras Based on a Three-Dimensional Target.
    Liu Z; Meng Z; Gao N; Zhang Z
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-kinect skeleton fusion for physical rehabilitation monitoring.
    Li S; Pathirana PN; Caelli T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5060-3. PubMed ID: 25571130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait.
    Vilas-Boas MDC; Choupina HMP; Rocha AP; Fernandes JM; Cunha JPS
    J Biomech; 2019 Apr; 87():189-196. PubMed ID: 30914189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of respiratory motion tracking using Microsoft Kinect v2 sensor.
    Silverstein E; Snyder M
    J Appl Clin Med Phys; 2018 May; 19(3):193-204. PubMed ID: 29577603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.
    Su PC; Shen J; Xu W; Cheung SS; Luo Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment.
    Lafayette TBG; Kunst VHL; Melo PVS; Guedes PO; Teixeira JMXN; Vasconcelos CR; Teichrieb V; da Gama AEF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system.
    Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B
    Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
    Siena FL; Byrom B; Watts P; Breedon P
    J Med Syst; 2018 Feb; 42(3):53. PubMed ID: 29404692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of depth cameras for three-dimensional reconstruction in medicine.
    Chiu CY; Thelwell M; Senior T; Choppin S; Hart J; Wheat J
    Proc Inst Mech Eng H; 2019 Sep; 233(9):938-947. PubMed ID: 31250706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras.
    Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S
    Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MarkerLess Motion Capture: ML-MoCap, a low-cost modular multi-camera setup.
    Geelen JE; Branco MP; Ramsey NF; van der Helm FCT; Mugge W; Schouten AC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4859-4862. PubMed ID: 34892297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation.
    Lam WWT; Tang YM; Fong KNK
    J Neuroeng Rehabil; 2023 May; 20(1):57. PubMed ID: 37131238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concurrent Validity of a Custom Method for Markerless 3D Full-Body Motion Tracking of Children and Young Adults Based on a Single RGB-D Camera.
    Hesse N; Baumgartner S; Gut A; van Hedel HJA
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1943-1951. PubMed ID: 37028016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Extrinsic Calibration of Multiple RGB-D Cameras with Body Tracking and Feature Matching.
    Lee SH; Yoo J; Park M; Kim J; Kwon S
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple benchmarking method for determining the accuracy of depth cameras in body landmark location estimation: Static upright posture as a measurement example.
    Liu PL; Chang CC; Lin JH; Kobayashi Y
    PLoS One; 2021; 16(7):e0254814. PubMed ID: 34288917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction.
    Mersmann S; Seitel A; Erz M; Jähne B; Nickel F; Mieth M; Mehrabi A; Maier-Hein L
    Med Phys; 2013 Aug; 40(8):082701. PubMed ID: 23927355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors.
    Wu J; Jafari R
    Proc Wirel Health; 2014 Oct; 2014():. PubMed ID: 28239688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.