These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36086257)

  • 21. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covariant Cluster Transfer for Kernel Reinforcement Learning in Brain-Machine Interface.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3086-3089. PubMed ID: 33018657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiological responses of medial prefrontal cortex to feedback at different levels of hierarchy.
    Shahnazian D; Shulver K; Holroyd CB
    Neuroimage; 2018 Dec; 183():121-131. PubMed ID: 30081194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near Perfect Neural Critic from Motor Cortical Activity Toward an Autonomously Updating Brain Machine Interface.
    An J; Yadav T; Ahmadi MB; Tarigoppula VSA; Francis JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():73-76. PubMed ID: 30440344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature extraction and unsupervised classification of neural population reward signals for reinforcement based BMI.
    Prins NW; Geng S; Pohlmeyer EA; Mahmoudi B; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5250-3. PubMed ID: 24110920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantized Attention-Gated Kernel Reinforcement Learning for Brain-Machine Interface Decoding.
    Wang F; Wang Y; Xu K; Li H; Liao Y; Zhang Q; Zhang S; Zheng X; Principe JC
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):873-886. PubMed ID: 26625423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.
    Marsh BT; Tarigoppula VS; Chen C; Francis JT
    J Neurosci; 2015 May; 35(19):7374-87. PubMed ID: 25972167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurons in rat orbitofrontal cortex and medial prefrontal cortex exhibit distinct responses in reward and strategy-update in a risk-based decision-making task.
    Hong DD; Huang WQ; Ji AA; Yang SS; Xu H; Sun KY; Cao A; Gao WJ; Zhou N; Yu P
    Metab Brain Dis; 2019 Apr; 34(2):417-429. PubMed ID: 30535618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Where Does Value Come From?
    Juechems K; Summerfield C
    Trends Cogn Sci; 2019 Oct; 23(10):836-850. PubMed ID: 31494042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Policy adjustment in a dynamic economic game.
    Li J; McClure SM; King-Casas B; Montague PR
    PLoS One; 2006 Dec; 1(1):e103. PubMed ID: 17183636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning.
    McDannald MA; Lucantonio F; Burke KA; Niv Y; Schoenbaum G
    J Neurosci; 2011 Feb; 31(7):2700-5. PubMed ID: 21325538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area.
    Jo YS; Lee J; Mizumori SJ
    J Neurosci; 2013 May; 33(19):8159-71. PubMed ID: 23658156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.