BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36086279)

  • 1. Automated Microsurgical Tool Segmentation and Characterization in Intra-Operative Neurosurgical Videos.
    Deepika P; Udupa K; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2110-2114. PubMed ID: 36086279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical Tool Detection and Characterization in Intra-operative Neurosurgical Videos.
    Ramesh A; Beniwal M; Uppar AM; V V; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2676-2681. PubMed ID: 34891803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation.
    Davids J; Makariou SG; Ashrafian H; Darzi A; Marcus HJ; Giannarou S
    World Neurosurg; 2021 May; 149():e669-e686. PubMed ID: 33588081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does Robotic Surgical Simulator Performance Correlate With Surgical Skill?
    Mills JT; Hougen HY; Bitner D; Krupski TL; Schenkman NS
    J Surg Educ; 2017; 74(6):1052-1056. PubMed ID: 28623113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic microsurgery: validating an assessment tool and plotting the learning curve.
    Alrasheed T; Liu J; Hanasono MM; Butler CE; Selber JC
    Plast Reconstr Surg; 2014 Oct; 134(4):794-803. PubMed ID: 25357037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How expert surgeons review robotic videos: A grounded theory study.
    Soliman MM; Soliman MK
    Am J Surg; 2023 Nov; 226(5):709-716. PubMed ID: 37558519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based video-analysis of instrument motion in microvascular anastomosis training.
    Sugiyama T; Sugimori H; Tang M; Ito Y; Gekka M; Uchino H; Ito M; Ogasawara K; Fujimura M
    Acta Neurochir (Wien); 2024 Jan; 166(1):6. PubMed ID: 38214753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated tool detection with deep learning for monitoring kinematics and eye-hand coordination in microsurgery.
    Koskinen J; Torkamani-Azar M; Hussein A; Huotarinen A; Bednarik R
    Comput Biol Med; 2022 Feb; 141():105121. PubMed ID: 34968859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Microneurosurgical Skill with Medico-Engineering Technology.
    Harada K; Morita A; Minakawa Y; Baek YM; Sora S; Sugita N; Kimura T; Tanikawa R; Ishikawa T; Mitsuishi M
    World Neurosurg; 2015 Oct; 84(4):964-71. PubMed ID: 26028599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a tool for non-technical skills evaluation in robotic surgery-the ICARS system.
    Raison N; Wood T; Brunckhorst O; Abe T; Ross T; Challacombe B; Khan MS; Novara G; Buffi N; Van Der Poel H; McIlhenny C; Dasgupta P; Ahmed K
    Surg Endosc; 2017 Dec; 31(12):5403-5410. PubMed ID: 28634630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal variability of surgical technical skill perception in real robotic surgery.
    Kelly JD; Nash M; Heller N; Lendvay TS; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2101-2107. PubMed ID: 32860549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crowdsourcing: a valid alternative to expert evaluation of robotic surgery skills.
    Polin MR; Siddiqui NY; Comstock BA; Hesham H; Brown C; Lendvay TS; Martino MA
    Am J Obstet Gynecol; 2016 Nov; 215(5):644.e1-644.e7. PubMed ID: 27365004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study.
    Tang M; Sugiyama T; Takahari R; Sugimori H; Yoshimura T; Ogasawara K; Kudo K; Fujimura M
    Neurosurg Rev; 2024 May; 47(1):200. PubMed ID: 38722409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical Experience Using a New Robotic System Created for Microsurgery.
    van Mulken TJM; Boymans CAEM; Schols RM; Cau R; Schoenmakers FBF; Hoekstra LT; Qiu SS; Selber JC; van der Hulst RRWJ
    Plast Reconstr Surg; 2018 Nov; 142(5):1367-1376. PubMed ID: 30119108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a technical checklist for the assessment of suturing in robotic surgery.
    Guni A; Raison N; Challacombe B; Khan S; Dasgupta P; Ahmed K
    Surg Endosc; 2018 Nov; 32(11):4402-4407. PubMed ID: 30194643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic-assisted microvascular surgery: skill acquisition in a rat model.
    Clarke NS; Price J; Boyd T; Salizzoni S; Zehr KJ; Nieponice A; Bajona P
    J Robot Surg; 2018 Jun; 12(2):331-336. PubMed ID: 28812257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing Grasp Monitoring to Predict Microsurgical Expertise.
    Koskinen J; He W; Elomaa AP; Kaipainen A; Hussein A; Zheng B; Huotarinen A; Bednarik R
    J Surg Res; 2023 Feb; 282():101-108. PubMed ID: 36265429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key role of microsurgical dissections on cadaveric specimens in neurosurgical training: Setting up a new research anatomical laboratory and defining neuroanatomical milestones.
    Fava A; Gorgoglione N; De Angelis M; Esposito V; di Russo P
    Front Surg; 2023; 10():1145881. PubMed ID: 36969758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual Reality Warm-up Before Robot-assisted Surgery: A Randomized Controlled Trial.
    Kelly JD; Kowalewski TM; Brand T; French A; Nash M; Meryman L; Heller N; Organ N; George E; Smith R; Sorensen MD; Comstock B; Lendvay TS
    J Surg Res; 2021 Aug; 264():107-116. PubMed ID: 33799119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.