BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36086288)

  • 21. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
    Lee C; Johnson B; Jung T; Molnar A
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging.
    Burri S; Powolny F; Bruschini C; Michalet X; Regazzoni F; Charbon E
    Proc SPIE Int Soc Opt Eng; 2014 Apr; 9141():. PubMed ID: 28626292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of machine learning in time-domain fluorescence lifetime imaging: a review.
    Gouzou D; Taimori A; Haloubi T; Finlayson N; Wang Q; Hopgood JR; Vallejo M
    Methods Appl Fluoresc; 2024 Feb; 12(2):. PubMed ID: 38055998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution.
    Bowman AJ; Kasevich MA
    ACS Nano; 2021 Oct; 15(10):16043-16054. PubMed ID: 34546704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field programmable gate array compression for large array multispeckle diffuse correlation spectroscopy.
    Della Rocca FM; Sie EJ; Catoen R; Marsili F; Henderson RK
    J Biomed Opt; 2023 May; 28(5):057001. PubMed ID: 37168688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation.
    Zickus V; Wu ML; Morimoto K; Kapitany V; Fatima A; Turpin A; Insall R; Whitelaw J; Machesky L; Bruschini C; Faccio D; Charbon E
    Sci Rep; 2020 Dec; 10(1):20986. PubMed ID: 33268900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualising varnish removal for conservation of paintings by fluorescence lifetime imaging (FLIM).
    Wilda CB; Burnstock A; Suhling K; Mattioli Della Rocca F; Henderson RK; Nedbal J
    Herit Sci; 2023; 11(1):127. PubMed ID: 37333623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wide-field time-gated SPAD imager for phasor-based FLIM applications.
    Ulku A; Ardelean A; Antolovic M; Weiss S; Charbon E; Bruschini C; Michalet X
    Methods Appl Fluoresc; 2020 Feb; 8(2):024002. PubMed ID: 31968310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy.
    Sorrells JE; Iyer RR; Yang L; Chaney EJ; Marjanovic M; Tu H; Boppart SA
    Opt Express; 2021 Nov; 29(23):37759-37775. PubMed ID: 34808842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors.
    Nie K; Wang X; Qiao J; Xu J
    Sensors (Basel); 2016 Jan; 16(2):160. PubMed ID: 26828490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A method for the fast and photon-efficient analysis of time-domain fluorescence lifetime image data over large dynamic ranges.
    Laine RF; Poudel C; Kaminski CF
    J Microsc; 2022 Sep; 287(3):138-147. PubMed ID: 35676768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts.
    Silva SF; Domingues JP; Morgado AM
    PLoS One; 2019; 14(5):e0216894. PubMed ID: 31086413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous multi-spectral, single-photon fluorescence imaging using a plasmonic colour filter array.
    Connolly PWR; Valli J; Shah YD; Altmann Y; Grant J; Accarino C; Rickman C; Cumming DRS; Buller GS
    J Biophotonics; 2021 Jul; 14(7):e202000505. PubMed ID: 33829644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.
    Krstajić N; Poland S; Levitt J; Walker R; Erdogan A; Ameer-Beg S; Henderson RK
    Opt Lett; 2015 Sep; 40(18):4305-8. PubMed ID: 26371922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor.
    Kekkonen J; Finnilä MAJ; Heikkilä J; Anttonen V; Nissinen I
    Analyst; 2019 Oct; 144(20):6089-6097. PubMed ID: 31531497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment.
    Petusseau AF; Streeter SS; Ulku A; Feng Y; Samkoe KS; Bruschini C; Charbon E; Pogue BW; Bruza P
    J Biomed Opt; 2024 Jan; 29(1):016004. PubMed ID: 38235320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-field tomographic fluorescence lifetime imaging microscopy.
    Ma Y; Huang L; Sen C; Burri S; Bruschini C; Yang X; Cameron RB; Fishbein GA; Gomperts BN; Ozcan A; Charbon E; Gao L
    Res Sq; 2023 May; ():. PubMed ID: 37214842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study.
    Ardelean A; Ulku AC; Michalet X; Charbon E; Bruschini C
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10882():. PubMed ID: 33833477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 512×512 SPAD Image Sensor with Integrated Gating for Widefield FLIM.
    Ulku AC; Bruschini C; Antolovic IM; Charbon E; Kuo Y; Ankri R; Weiss S; Michalet X
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 31156324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast bi-exponential fluorescence lifetime imaging analysis methods.
    Li DD; Yu H; Chen Y
    Opt Lett; 2015 Feb; 40(3):336-9. PubMed ID: 25680041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.