These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36086360)

  • 1. A Cascaded Deep Learning Framework for Segmentation of Nuclei in Digital Histology Images.
    Saednia K; Tran WT; Sadeghi-Naini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4764-4767. PubMed ID: 36086360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.
    Gudhe NR; Kosma VM; Behravan H; Mannermaa A
    BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional Blur Attention Network for Cell Nuclei Segmentation.
    Thi Le P; Pham T; Hsu YC; Wang JC
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution deep transferred ASPPU-Net for nuclei segmentation of histopathology images.
    Chanchal AK; Lal S; Kini J
    Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2159-2175. PubMed ID: 34622381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network.
    Ali H; Haq IU; Cui L; Feng J
    BMC Med Inform Decis Mak; 2022 Apr; 22(1):90. PubMed ID: 35379228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images.
    Jena B; Digdarshi D; Paul S; Nayak GK; Saxena S
    Microscopy (Oxf); 2023 Jun; 72(3):249-264. PubMed ID: 36409001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.
    Graham S; Vu QD; Raza SEA; Azam A; Tsang YW; Kwak JT; Rajpoot N
    Med Image Anal; 2019 Dec; 58():101563. PubMed ID: 31561183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopy cell nuclei segmentation with enhanced U-Net.
    Long F
    BMC Bioinformatics; 2020 Jan; 21(1):8. PubMed ID: 31914944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images.
    Lal S; Das D; Alabhya K; Kanfade A; Kumar A; Kini J
    Comput Biol Med; 2021 Jan; 128():104075. PubMed ID: 33190012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CellViT: Vision Transformers for precise cell segmentation and classification.
    Hörst F; Rempe M; Heine L; Seibold C; Keyl J; Baldini G; Ugurel S; Siveke J; Grünwald B; Egger J; Kleesiek J
    Med Image Anal; 2024 May; 94():103143. PubMed ID: 38507894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDC-net: A new convolutional neural network for nucleus segmentation in histopathology images with distance maps and contour information.
    Liu X; Guo Z; Cao J; Tang J
    Comput Biol Med; 2021 Aug; 135():104543. PubMed ID: 34146800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Densely Convolutional Spatial Attention Network for nuclei segmentation of histological images for computational pathology.
    Islam Sumon R; Bhattacharjee S; Hwang YB; Rahman H; Kim HC; Ryu WS; Kim DM; Cho NH; Choi HK
    Front Oncol; 2023; 13():1009681. PubMed ID: 37305563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRPN: similarity-based region proposal networks for nuclei and cells detection in histology images.
    Sun Y; Huang X; Zhou H; Zhang Q
    Med Image Anal; 2021 Aug; 72():102142. PubMed ID: 34198042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling a Single Deep Learning Model for Accurate Gland Instance Segmentation: A Shape-Aware Adversarial Learning Framework.
    Yan Z; Yang X; Cheng KT
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2176-2189. PubMed ID: 31944936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map.
    Naylor P; Lae M; Reyal F; Walter T
    IEEE Trans Med Imaging; 2019 Feb; 38(2):448-459. PubMed ID: 30716022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy.
    Pan W; Liu Z; Song W; Zhen X; Yuan K; Xu F; Lin GN
    Genes (Basel); 2022 Feb; 13(3):. PubMed ID: 35327985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
    Ottom MA; Rahman HA; Dinov ID
    IEEE J Transl Eng Health Med; 2022; 10():1800508. PubMed ID: 35774412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.