These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36086415)

  • 1. Learning-based method for k-space trajectory design in MRI.
    Sharma S; Hari KVS; Leus G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1464-1467. PubMed ID: 36086415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a general framework for fast and feasible k-space trajectories for MRI based on projection methods.
    Sharma S; Coutino M; Chepuri SP; Leus G; Hari KVS
    Magn Reson Imaging; 2020 Oct; 72():122-134. PubMed ID: 32668272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial fourier shells trajectory for non-cartesian MRI.
    Tao S; Shu Y; Trzasko JD; Huston J; Bernstein MA
    Phys Med Biol; 2019 Feb; 64(4):04NT01. PubMed ID: 30625455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPARKLING: variable-density k-space filling curves for accelerated T
    Lazarus C; Weiss P; Chauffert N; Mauconduit F; El Gueddari L; Destrieux C; Zemmoura I; Vignaud A; Ciuciu P
    Magn Reson Med; 2019 Jun; 81(6):3643-3661. PubMed ID: 30773679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothed random-like trajectory for compressed sensing MRI.
    Wang H; Wang X; Zhou Y; Chang Y; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():404-7. PubMed ID: 23365914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic optimization of three-dimensional non-Cartesian sampling trajectory.
    Wang G; Nielsen JF; Fessler JA; Noll DC
    Magn Reson Med; 2023 Aug; 90(2):417-431. PubMed ID: 37066854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-space trajectory mapping and its application for ultrashort Echo time imaging.
    Latta P; Starčuk Z; Gruwel ML; Weber MH; Tomanek B
    Magn Reson Imaging; 2017 Feb; 36():68-76. PubMed ID: 27742433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.
    Yang Y; Liu F; Li M; Jin J; Weber E; Liu Q; Crozier S
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):816-825. PubMed ID: 27305666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B-Spline Parameterized Joint Optimization of Reconstruction and K-Space Trajectories (BJORK) for Accelerated 2D MRI.
    Wang G; Luo T; Nielsen JF; Noll DC; Fessler JA
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2318-2330. PubMed ID: 35320096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG.
    Seiberlich N; Breuer F; Heidemann R; Blaimer M; Griswold M; Jakob P
    Magn Reson Med; 2008 May; 59(5):1127-37. PubMed ID: 18429026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI using a concentric rings trajectory.
    Wu HH; Lee JH; Nishimura DG
    Magn Reson Med; 2008 Jan; 59(1):102-12. PubMed ID: 17969074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous auto-calibration and gradient delays estimation (SAGE) in non-Cartesian parallel MRI using low-rank constraints.
    Jiang W; Larson PEZ; Lustig M
    Magn Reson Med; 2018 Nov; 80(5):2006-2016. PubMed ID: 29524244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying the uniform resampling (URS) algorithm to a lissajous trajectory: fast image reconstruction with optimal gridding.
    Moriguchi H; Wendt M; Duerk JL
    Magn Reson Med; 2000 Nov; 44(5):766-81. PubMed ID: 11064412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging.
    Ozaslan AA; Alacaoglu A; Demirel OB; Çukur T; Saritas EU
    Phys Med Biol; 2019 Aug; 64(16):165018. PubMed ID: 31342922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jointly Learning Non-Cartesian
    Radhakrishna CG; Ciuciu P
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K-space trajectories in 3D-GRASE sequence for high resolution structural imaging.
    Cristobal-Huerta A; Poot DHJ; Vogel MW; Krestin GP; Hernandez-Tamames JA
    Magn Reson Imaging; 2018 May; 48():10-19. PubMed ID: 29225108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging.
    Kim M; Chung W
    Comput Methods Programs Biomed; 2022 Oct; 225():107090. PubMed ID: 36067702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Prototyping of Two-Dimensional Non-Cartesian K-Space Trajectories (ROCKET) Using Pulseq and Graphical Programming Interface.
    Poojar P; Geethanath S; Reddy AK; Venkatesan R
    Crit Rev Biomed Eng; 2019; 47(4):349-363. PubMed ID: 31679263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general algorithm for compensation of trajectory errors: Application to radial imaging.
    Mani M; Magnotta V; Jacob M
    Magn Reson Med; 2018 Oct; 80(4):1605-1613. PubMed ID: 29493002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.