BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36086437)

  • 1. Surface Potential Simulation and Electrode Design for in-Ear EEG Measurement.
    Das A; Basu S; A A; Gubbi J; Muralidharan K; S M; S M; Biradar A; Pradhan U; Chakravarty T; Ramakrishnan RK; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():937-940. PubMed ID: 36086437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation.
    Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Life Dry-Contact Ear-EEG.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generic Dry-Contact Ear-EEG.
    Bertelsen AR; Bladt H; Christensen CB; Kappel SL; Toft HO; Rank ML; Mikkelsen KB; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5552-5555. PubMed ID: 31947113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless User-Generic Ear EEG.
    Kaveh R; Doong J; Zhou A; Schwendeman C; Gopalan K; Burghardt FL; Arias AC; Maharbiz MM; Muller R
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):727-737. PubMed ID: 32746342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual seizure annotation and automated seizure detection using behind-the-ear electroencephalographic channels.
    Vandecasteele K; De Cooman T; Dan J; Cleeren E; Van Huffel S; Hunyadi B; Van Paesschen W
    Epilepsia; 2020 Apr; 61(4):766-775. PubMed ID: 32160324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory evoked responses from Ear-EEG recordings.
    Kidmose P; Looney D; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():586-9. PubMed ID: 23365960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain Wearables: Validation Toolkit for Ear-Level EEG Sensors.
    Correia G; Crosse MJ; Lopez Valdes A
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Electroencephalographic Signal Quality of an In-Ear Wearable Device.
    Pazuelo J; Juez JY; Moumane H; Pyrzowski J; Mayor L; Segura-Quijano FE; Valderrama M; Le Van Quyen M
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability.
    Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Wearable EEG Devices Specialized for Passive Brain-Computer Interface Applications.
    Park S; Han CH; Im CH
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-class autoencoder approach for optimal electrode set identification in wearable EEG event monitoring
    Ferrari LM; Hanna GA; Volpe P; Ismailova E; Bremond F; Zuluaga MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7128-7131. PubMed ID: 34892744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hearables: Automatic Overnight Sleep Monitoring With Standardized In-Ear EEG Sensor.
    Nakamura T; Alqurashi YD; Morrell MJ; Mandic DP
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):203-212. PubMed ID: 31021747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density ear-EEG for understanding ear-centered EEG.
    Meiser A; Lena Knoll A; Bleichner MG
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38118173
    [No Abstract]   [Full Text] [Related]  

  • 16. Advances in Electrode Materials for Scalp, Forehead, and Ear EEG: A Mini-Review.
    Petrossian G; Kateb P; Miquet-Westphal F; Cicoira F
    ACS Appl Bio Mater; 2023 Aug; 6(8):3019-3032. PubMed ID: 37493408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording.
    Mascia A; Collu R; Spanu A; Fraschini M; Barbaro M; Cosseddu P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ear-EEG-based sleep scoring in epilepsy: A comparison with scalp-EEG.
    Jørgensen SD; Zibrandtsen IC; Kjaer TW
    J Sleep Res; 2020 Dec; 29(6):e12921. PubMed ID: 31621976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG.
    Mandekar S; Holland A; Thielen M; Behbahani M; Melnykowycz M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.