BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36086573)

  • 1. A Novel Sensor for Tissue Mechanical Property Detection During Robotic Surgery.
    Sun S; Dutson EP; Geoghegan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4834-4838. PubMed ID: 36086573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Inspired Haptic Feedback for Artificial Palpation in Robotic Surgery.
    Ouyang Q; Wu J; Sun S; Pensa J; Abiri A; Dutson E; Bisley J
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3184-3193. PubMed ID: 33905321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture differentiation using audio signal analysis with robotic interventional instruments.
    Chen CH; Sühn T; Kalmar M; Maldonado I; Wex C; Croner R; Boese A; Friebe M; Illanes A
    Comput Biol Med; 2019 Sep; 112():103370. PubMed ID: 31374348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.
    Chua Z; Okamura AM
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Precision and Miniature Fiber Bragg Grating-Based Force Sensor for Tissue Palpation During Minimally Invasive Surgery.
    Lv C; Wang S; Shi C
    Ann Biomed Eng; 2020 Feb; 48(2):669-681. PubMed ID: 31686311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue.
    Li M; Konstantinova J; Secco EL; Jiang A; Liu H; Nanayakkara T; Seneviratne LD; Dasgupta P; Althoefer K; Wurdemann HA
    Med Biol Eng Comput; 2015 Nov; 53(11):1177-86. PubMed ID: 26018755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Minimally Invasive Robotic Tissue Palpation Device.
    Mir M; Chen J; Patel A; Pinezich MR; Guenthart BA; Vunjak-Novakovic G; Kim J
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1958-1968. PubMed ID: 38261510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a dexterous robotic surgical instrument with a novel bending mechanism.
    Yang Y; Li J; Kong K; Wang S
    Int J Med Robot; 2022 Feb; 18(1):e2334. PubMed ID: 34551453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery.
    Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MUSHA underactuated hand for robot-aided minimally invasive surgery.
    Selvaggio M; Fontanelli GA; Marrazzo VR; Bracale U; Irace A; Breglio G; Villani L; Siciliano B; Ficuciello F
    Int J Med Robot; 2019 Jun; 15(3):e1981. PubMed ID: 30588772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.