BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36087275)

  • 1. Biofunctionalization of 3D Printed Porous Tantalum Using a Vancomycin-Carboxymethyl Chitosan Composite Coating to Improve Osteogenesis and Antibiofilm Properties.
    Liu T; Liu W; Zeng L; Wen Z; Xiong Z; Liao Z; Hu Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41764-41778. PubMed ID: 36087275
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Huang H; Wu Z; Yang Z; Fan X; Bai S; Luo J; Chen M; Xie X
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36220010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility.
    Hua L; Qian H; Lei T; Zhang Y; Lei P; Hu Y
    Macromol Biosci; 2022 Jan; 22(1):e2100338. PubMed ID: 34708567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration.
    Liu T; Li B; Chen G; Ye X; Zhang Y
    Int J Biol Macromol; 2022 Nov; 221():371-380. PubMed ID: 36067849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology.
    Luo C; Wang C; Wu X; Xie X; Wang C; Zhao C; Zou C; Lv F; Huang W; Liao J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112382. PubMed ID: 34579901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability.
    Wang X; Zhang D; Peng H; Yang J; Li Y; Xu J
    Biomater Adv; 2023 Nov; 154():213638. PubMed ID: 37812984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds.
    Fan H; Deng S; Tang W; Muheremu A; Wu X; He P; Tan C; Wang G; Tang J; Guo K; Yang L; Wang F
    Biomed Res Int; 2021; 2021():2899043. PubMed ID: 34621893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model.
    Zhang T; Wei Q; Zhou H; Zhou W; Fan D; Lin X; Jing Z; Cai H; Cheng Y; Liu X; Li W; Song C; Tian Y; Xu N; Zheng Y; Liu Z
    Biomater Sci; 2020 Jun; 8(11):3106-3115. PubMed ID: 32350485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of Ti
    Mi X; Su Z; Fu Y; Li S; Mo A
    Biomed Mater; 2022 Apr; 17(3):. PubMed ID: 35316803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects.
    Hua L; Lei T; Qian H; Zhang Y; Hu Y; Lei P
    Expert Opin Drug Deliv; 2021 May; 18(5):625-634. PubMed ID: 33270470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Layer Deposition of Tantalum Oxide Films on 3D-Printed Ti6Al4V Scaffolds with Enhanced Osteogenic Property for Orthopedic Implants.
    Zhang X; Guan S; Qiu J; Qiao Y; Qian S; Tan J; Yeung KWK; Liu X
    ACS Biomater Sci Eng; 2023 Jul; 9(7):4197-4207. PubMed ID: 37378535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Porous Tantalum Scaffold Improves Muscle Attachment via Integrin-β1-Activated AKT/MAPK Signaling Pathway.
    Zou L; Zhong Y; Li X; Yang X; He D
    ACS Biomater Sci Eng; 2023 Feb; 9(2):889-899. PubMed ID: 36701762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.