BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36087447)

  • 1. Dynamics and controls of inland water CH
    Yao Y; Tian H; Xu X; Li Y; Pan S
    Water Res; 2022 Oct; 224():119043. PubMed ID: 36087447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global methane and nitrous oxide emissions from inland waters and estuaries.
    Zheng Y; Wu S; Xiao S; Yu K; Fang X; Xia L; Wang J; Liu S; Freeman C; Zou J
    Glob Chang Biol; 2022 Aug; 28(15):4713-4725. PubMed ID: 35560967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
    Wang G; Xia X; Liu S; Zhang L; Zhang S; Wang J; Xi N; Zhang Q
    Water Res; 2021 Feb; 189():116654. PubMed ID: 33242789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.
    Panneer Selvam B; Natchimuthu S; Arunachalam L; Bastviken D
    Glob Chang Biol; 2014 Nov; 20(11):3397-407. PubMed ID: 24623552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-continental importance of CH
    Paranaíba JR; Aben R; Barros N; Quadra G; Linkhorst A; Amado AM; Brothers S; Catalán N; Condon J; Finlayson CM; Grossart HP; Howitt J; Oliveira Junior ES; Keller PS; Koschorreck M; Laas A; Leigh C; Marcé R; Mendonça R; Muniz CC; Obrador B; Onandia G; Raymundo D; Reverey F; Roland F; Rõõm EI; Sobek S; von Schiller D; Wang H; Kosten S
    Sci Total Environ; 2022 Mar; 814():151925. PubMed ID: 34838923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?
    Pilla RM; Griffiths NA; Gu L; Kao SC; McManamay R; Ricciuto DM; Shi X
    Glob Chang Biol; 2022 Oct; 28(19):5601-5629. PubMed ID: 35856254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drivers of spatial and seasonal variations of CO
    Sun H; Yu R; Liu X; Cao Z; Li X; Zhang Z; Wang J; Zhuang S; Ge Z; Zhang L; Sun L; Lorke A; Yang J; Lu C; Lu X
    Water Res; 2022 Aug; 222():118916. PubMed ID: 35921715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.
    Campeau A; Del Giorgio PA
    Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane and nitrous oxide have separated production zones and distinct emission pathways in freshwater aquaculture ponds.
    Yuan J; Liu D; Xiang J; He T; Kang H; Ding W
    Water Res; 2021 Feb; 190():116739. PubMed ID: 33333434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling.
    Huotari J; Nykänen H; Forsius M; Arvola L
    Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fencing farm dams to exclude livestock halves methane emissions and improves water quality.
    Malerba ME; Lindenmayer DB; Scheele BC; Waryszak P; Yilmaz IN; Schuster L; Macreadie PI
    Glob Chang Biol; 2022 Aug; 28(15):4701-4712. PubMed ID: 35562855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide.
    Peacock M; Audet J; Bastviken D; Cook S; Evans CD; Grinham A; Holgerson MA; Högbom L; Pickard AE; Zieliński P; Futter MN
    Glob Chang Biol; 2021 Oct; 27(20):5109-5123. PubMed ID: 34165851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net emissions of CH4 and CO2 in Alaska: implications for the region's greenhouse gas budget.
    Zhuang Q; Melillo JM; McGuire AD; Kicklighter DW; Prinn RG; Steudler PA; Felzer BS; Hu S
    Ecol Appl; 2007 Jan; 17(1):203-12. PubMed ID: 17479846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global methane emissions from rivers and streams.
    Rocher-Ros G; Stanley EH; Loken LC; Casson NJ; Raymond PA; Liu S; Amatulli G; Sponseller RA
    Nature; 2023 Sep; 621(7979):530-535. PubMed ID: 37587344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large greenhouse gases emissions from China's lakes and reservoirs.
    Li S; Bush RT; Santos IR; Zhang Q; Song K; Mao R; Wen Z; Lu XX
    Water Res; 2018 Dec; 147():13-24. PubMed ID: 30296605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments.
    Chamberlain SD; Groffman PM; Boughton EH; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ; Sparks JP
    Ecol Appl; 2017 Jun; 27(4):1199-1209. PubMed ID: 28140494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.