These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36087676)

  • 21. Climate change impacts on conventional and flash droughts in the Mekong River Basin.
    Kang H; Sridhar V; Ali SA
    Sci Total Environ; 2022 Sep; 838(Pt 2):155845. PubMed ID: 35561902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin.
    Li P; Omani N; Chaubey I; Wei X
    Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28481311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal heterogeneity in meteorological and hydrological drought patterns and propagations influenced by climatic variability, LULC change, and human regulations.
    Li Y; Huang Y; Li Y; Zhang H; Fan J; Deng Q; Wang X
    Sci Rep; 2024 Mar; 14(1):5965. PubMed ID: 38472337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin.
    Tian Y; Xu YP; Wang G
    Sci Total Environ; 2018 May; 622-623():710-720. PubMed ID: 29223897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonstationary footprints of ENSO in the Mekong River Delta hydrology.
    Watanabe TK; Phan TT; Yamazaki A; Chiang HW; Shen CC; Doan LD; Watanabe T
    Sci Rep; 2022 Dec; 12(1):21186. PubMed ID: 36477088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The correlation between three teleconnections and leptospirosis incidence in the Kandy District, Sri Lanka, 2004-2019.
    Ehelepola NDB; Ariyaratne K; Aththanayake AMSMCM; Samarakoon K; Thilakarathna HMA
    Trop Med Health; 2021 May; 49(1):43. PubMed ID: 34039442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Worsening drought of Nile basin under shift in atmospheric circulation, stronger ENSO and Indian Ocean dipole.
    Mahmoud SH; Gan TY; Allan RP; Li J; Funk C
    Sci Rep; 2022 May; 12(1):8049. PubMed ID: 35577921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-datasets to monitor and assess meteorological and hydrological droughts in a typical basin of the Brazilian semiarid region.
    da Silva GJF; Silva RMD; Brasil Neto RM; Silva JFCBC; Dantas APX; Santos CAG
    Environ Monit Assess; 2024 Mar; 196(4):368. PubMed ID: 38489071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of drought indices in the analysis of spatial and temporal changes of climatic drought events in a basin.
    Li X; Sha J; Wang ZL
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10695-10707. PubMed ID: 30778933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated drought monitoring and assessment using multi-sensor and multi-temporal earth observation datasets: a case study of two agriculture-dominated states of India.
    C M AM; Chowdary VM; Kesarwani M; Neeti N
    Environ Monit Assess; 2022 Oct; 195(1):1. PubMed ID: 36264398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Persistence and spatial-temporal variability of drought severity in Iran.
    Noorisameleh Z; Gough WA; Mirza MMQ
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48808-48822. PubMed ID: 33928509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resilience of seed production to a severe El Niño-induced drought across functional groups and dispersal types.
    O'Brien MJ; Peréz-Aviles D; Powers JS
    Glob Chang Biol; 2018 Nov; 24(11):5270-5280. PubMed ID: 30080318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China.
    Omer A; Zhuguo M; Zheng Z; Saleem F
    Sci Total Environ; 2020 Feb; 704():135428. PubMed ID: 31896217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GRACE-based groundwater drought in the Indochina Peninsula during 1979-2020: Changing properties and possible teleconnection mechanisms.
    Song X; Chen H; Chen T; Qin Z; Chen S; Yang N; Deng S
    Sci Total Environ; 2024 Jan; 908():168423. PubMed ID: 37951249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods.
    Meilutytė-Lukauskienė D; Nazarenko S; Kobets Y; Akstinas V; Sharifi A; Haghighi AT; Hashemi H; Kokorīte I; Ozolina B
    Sci Total Environ; 2024 Feb; 913():169669. PubMed ID: 38176563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of the drought indicators system in the Júcar River Basin, Spain.
    Ortega-Gómez T; Pérez-Martín MA; Estrela T
    Sci Total Environ; 2018 Jan; 610-611():276-290. PubMed ID: 28806545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection.
    Zhu Y; Wang W; Singh VP; Liu Y
    Sci Total Environ; 2016 Nov; 571():1058-68. PubMed ID: 27450249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Past, present and future changes in the annual streamflow of the Lancang-Mekong River and their driving mechanisms.
    Wang S; Chen F; Hu M; Chen Y; Cao H; Yue W; Zhao X
    Sci Total Environ; 2024 Oct; 947():174707. PubMed ID: 38997035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of meteorological drought-hydrological drought propagation to watershed scales in the upper Huaihe River basin, China.
    Yu M; Liu X; Li Q
    Environ Sci Pollut Res Int; 2020 May; 27(15):17561-17570. PubMed ID: 31502051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved drought monitoring in teleconnection to the climatic escalations: A hydrological modeling based approach.
    Dash SS; Sahoo B; Raghuwanshi NS
    Sci Total Environ; 2023 Jan; 857(Pt 2):159545. PubMed ID: 36270357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.