These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36087727)

  • 1. Molecular fingerprints of polar narcotic chemicals based on heterozygous essential gene knockout library in Saccharomyces cerevisiae.
    Guan M; Ji W; Xu Y; Yan L; Chen D; Li S; Zhang X
    Chemosphere; 2022 Dec; 308(Pt 2):136343. PubMed ID: 36087727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional genomics assessment of narcotic and specific acting chemical pollutants using E. coli.
    Guan M; Fang W; Ullah S; Zhang X; Saquib Q; Al-Khedhairy AA
    Environ Pollut; 2018 Jan; 232():146-153. PubMed ID: 28939122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata.
    Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U
    Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estrogenicity and acute toxicity of selected anilines using a recombinant yeast assay.
    Hamblen EL; Cronin MT; Schultz TW
    Chemosphere; 2003 Aug; 52(7):1173-81. PubMed ID: 12820998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity.
    Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH
    Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity relationship analysis for polar narcotics.
    Chen CY; Ko CW; Lee PI
    Environ Toxicol Chem; 2007 Jun; 26(6):1158-64. PubMed ID: 17571680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs.
    Aruoja V; Sihtmäe M; Dubourguier HC; Kahru A
    Chemosphere; 2011 Sep; 84(10):1310-20. PubMed ID: 21664645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals.
    Jaworska JS; Schultz TW
    SAR QSAR Environ Res; 1993; 1(1):3-19. PubMed ID: 8790624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols.
    Cronin MT; Schultz TW
    Sci Total Environ; 1997 Sep; 204(1):75-88. PubMed ID: 9299768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism-based quantitative structure-activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus.
    Wang X; Yu J; Wang Y; Wang L
    Chemosphere; 2002 Jan; 46(2):241-50. PubMed ID: 11827281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of toxicity of phenols and anilines to algae by quantitative structure-activity relationship.
    Lu GH; Wang C; Guo XL
    Biomed Environ Sci; 2008 Jun; 21(3):193-6. PubMed ID: 18714815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae.
    Guan M; Zhu Z; Jiang Y; Tian M; Yan L; Xu X; Li S; Chen D; Zhang X
    Toxicol In Vitro; 2022 Mar; 79():105278. PubMed ID: 34843885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantitative structure-activity relationships of joint toxicity of 3, 4-dichloroaniline and substituted aromatics].
    Lu GH; Wu H; Chen ZY; Li Y
    Huan Jing Ke Xue; 2009 Oct; 30(10):3104-9. PubMed ID: 19968139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols.
    Damborsky J; Schultz TW
    Chemosphere; 1997 Feb; 34(2):429-46. PubMed ID: 9057301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Approach to the Toxicity Prediction of Anilines and Phenols Towards Aquatic Organisms.
    Muhire J; Li BQ; Zhai HL; Li SS; Mi JY
    Arch Environ Contam Toxicol; 2020 May; 78(4):545-554. PubMed ID: 31915850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of aquatic experimental versus predicted and extrapolated chronic toxicity data of four structural analogues.
    Dom N; Knapen D; Blust R
    Chemosphere; 2012 Jan; 86(1):56-64. PubMed ID: 21944038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data.
    Dom N; Knapen D; Benoot D; Nobels I; Blust R
    Chemosphere; 2010 Sep; 81(2):177-86. PubMed ID: 20637490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.