These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36087767)

  • 1. RGB colorimetric method based detection of oxytocin in food samples using cysteamine functionalized gold nanoparticles.
    Rastogi S; Kumari V; Sharma V; Ahmad FJ
    Anal Biochem; 2022 Nov; 656():114886. PubMed ID: 36087767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.
    Kang J; Zhang Y; Li X; Miao L; Wu A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles.
    Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE
    Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis.
    Chotchuang T; Cheewasedtham W; Jayeoye TJ; Rujiralai T
    Mikrochim Acta; 2019 Aug; 186(9):655. PubMed ID: 31463772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin.
    Gukowsky JC; Tan C; Han Z; He L
    J Food Sci; 2018 Jun; 83(6):1631-1638. PubMed ID: 29786853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles.
    Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y
    J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RGB color analysis of formaldehyde in vegetables based on DNA functionalized gold nanoparticles and triplex DNA.
    Huang W; Zhao L; Shen R; Li G; Ling L
    Anal Methods; 2022 Sep; 14(36):3598-3604. PubMed ID: 36047367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles.
    Tu Q; Yang T; Qu Y; Gao S; Zhang Z; Zhang Q; Wang Y; Wang J; He L
    Analyst; 2019 Mar; 144(6):2017-2025. PubMed ID: 30702090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol.
    Rajamanikandan R; Shanmugaraj K; Ilanchelian M; Ju H
    Chemosphere; 2023 Mar; 316():137836. PubMed ID: 36642146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes.
    Cao R; Li B
    Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles.
    Shanmugaraj K; Sasikumar T; Campos CH; Ilanchelian M; Mangalaraja RV; Torres CC
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118281. PubMed ID: 32335419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles.
    Aamri ME; Mohammadi H; Amine A
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM).
    Sharma AK; Pandey S; Nerthigan Y; Swaminathan N; Wu HF
    Anal Chim Acta; 2018 Sep; 1024():161-168. PubMed ID: 29776542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles.
    Ma Y; Jiang L; Mei Y; Song R; Tian D; Huang H
    Analyst; 2013 Sep; 138(18):5338-43. PubMed ID: 23875182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconjugated gold nanoparticles as an efficient colorimetric sensor for cancer diagnostics.
    Akshaya K; Arthi C; Pavithra AJ; Poovizhi P; Antinate SS; Hikku GS; Jeyasubramanian K; Murugesan R
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101699. PubMed ID: 32135315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection.
    Sankoh S; Thammakhet C; Numnuam A; Limbut W; Kanatharana P; Thavarungkul P
    Biosens Bioelectron; 2016 Nov; 85():743-750. PubMed ID: 27266659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugation of cysteamine functionalized nanodiamond to gold nanoparticles for pH enhanced colorimetric detection of Cr
    Shellaiah M; Sun KW
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121962. PubMed ID: 36257217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric sensing of selenocystine using gold nanoparticles.
    Liu L; Wang X; Yang J; Bai Y
    Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scanner-based colorimetric mercuric ion detection using Tween-20-stabilized AuNPs solution in 96-well plates.
    Poorahong S; Niammusik A; Chaykleang P; Kanatharana P; Thavarungkul P; Thammakhet-Buranachai C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1082-1088. PubMed ID: 28753095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples.
    Zhao T; Liang X; Guo X; Yang X; Guo J; Zhou X; Huang X; Zhang W; Wang Y; Liu Z; Jiang Z; Zhou H; Zhou H
    Food Chem; 2023 Mar; 404(Pt B):134768. PubMed ID: 36444090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.