These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36087783)
1. Regulation of carbon flux and NADH/NAD Lu P; Gao T; Bai R; Yang J; Xu Y; Chu W; Jiang K; Zhang J; Xu F; Zhao H J Biotechnol; 2022 Nov; 358():67-75. PubMed ID: 36087783 [TBL] [Abstract][Full Text] [Related]
2. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862 [TBL] [Abstract][Full Text] [Related]
3. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Jung MY; Ng CY; Song H; Lee J; Oh MK Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429 [TBL] [Abstract][Full Text] [Related]
4. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. Yang TH; Rathnasingh C; Lee HJ; Seung D J Biotechnol; 2014 Feb; 172():59-66. PubMed ID: 24389066 [TBL] [Abstract][Full Text] [Related]
5. Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. Kim B; Lee S; Jeong D; Yang J; Oh MK; Lee J PLoS One; 2014; 9(10):e105322. PubMed ID: 25329548 [TBL] [Abstract][Full Text] [Related]
6. Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum. Yang J; Kim B; Kim H; Kweon Y; Lee S; Lee J Appl Biochem Biotechnol; 2015 Aug; 176(8):2303-13. PubMed ID: 26113219 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Kim SJ; Kim JW; Lee YG; Park YC; Seo JH Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
9. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli. Reshamwala SMS; Deb SS; Lali AM J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1273-1277. PubMed ID: 28547323 [TBL] [Abstract][Full Text] [Related]
10. The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Lu M; Park C; Lee S; Kim B; Oh MK; Um Y; Kim J; Lee J Bioprocess Biosyst Eng; 2014 Mar; 37(3):343-53. PubMed ID: 23872849 [TBL] [Abstract][Full Text] [Related]
11. Impact of acetolactate synthase inactivation on 1,3-propanediol fermentation by Klebsiella pneumoniae. Zhou S; Huang Y; Mao X; Li L; Guo C; Gao Y; Qin Q PLoS One; 2019; 14(4):e0200978. PubMed ID: 31017890 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. Li S; Gao X; Xu N; Liu L; Chen J Microb Cell Fact; 2014 Apr; 13(1):55. PubMed ID: 24725668 [TBL] [Abstract][Full Text] [Related]
13. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Wu Y; Hao Y; Wei X; Shen Q; Ding X; Wang L; Zhao H; Lu Y Biotechnol Biofuels; 2017; 10():248. PubMed ID: 29093752 [TBL] [Abstract][Full Text] [Related]
14. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
16. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Zhao H; Lu Y; Wang L; Zhang C; Yang C; Xing X Bioresour Technol; 2015 Oct; 194():99-107. PubMed ID: 26188552 [TBL] [Abstract][Full Text] [Related]
17. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979 [TBL] [Abstract][Full Text] [Related]
18. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Jang JW; Jung HM; Im DK; Jung MY; Oh MK Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805 [TBL] [Abstract][Full Text] [Related]
19. A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Lee GB; Kim YJ; Lim JK; Kim TW; Kang SG; Lee HS; Lee JH Appl Microbiol Biotechnol; 2019 Apr; 103(8):3477-3485. PubMed ID: 30887173 [TBL] [Abstract][Full Text] [Related]