These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36087810)

  • 1. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological?
    Hu HY; Liu YJ
    Biochim Biophys Acta Mol Cell Res; 2022 Dec; 1869(12):119360. PubMed ID: 36087810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization and Function of Non-dynamic Biomolecular Condensates.
    Woodruff JB; Hyman AA; Boke E
    Trends Biochem Sci; 2018 Feb; 43(2):81-94. PubMed ID: 29258725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer membraneless organelles sequester native factors for control of cell behavior.
    Garabedian MV; Wang W; Dabdoub JB; Tong M; Caldwell RM; Benman W; Schuster BS; Deiters A; Good MC
    Nat Chem Biol; 2021 Sep; 17(9):998-1007. PubMed ID: 34341589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation.
    Küffner AM; Linsenmeier M; Grigolato F; Prodan M; Zuccarini R; Capasso Palmiero U; Faltova L; Arosio P
    Chem Sci; 2021 Feb; 12(12):4373-4382. PubMed ID: 34163700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing.
    Alberti S; Hyman AA
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):196-213. PubMed ID: 33510441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Balance Imaging: A Phase Portrait Analysis for Characterizing Growth Kinetics of Biomolecular Condensates.
    Geisler J; Yan VT; Grill S; Narayanan A
    Methods Mol Biol; 2023; 2563():413-424. PubMed ID: 36227486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk between Biomolecular Condensates and Proteostasis.
    Amzallag E; Hornstein E
    Cells; 2022 Aug; 11(15):. PubMed ID: 35954258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Implications of Intracellular Phase Transitions.
    Holehouse AS; Pappu RV
    Biochemistry; 2018 May; 57(17):2415-2423. PubMed ID: 29323488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered dynamics may drift pathological fibrillization in membraneless organelles.
    Tüű-Szabó B; Hoffka G; Duro N; Fuxreiter M
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):988-998. PubMed ID: 30999076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure in biomolecular condensates.
    Peran I; Mittag T
    Curr Opin Struct Biol; 2020 Feb; 60():17-26. PubMed ID: 31790873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A guide to regulation of the formation of biomolecular condensates.
    Bratek-Skicki A; Pancsa R; Meszaros B; Van Lindt J; Tompa P
    FEBS J; 2020 May; 287(10):1924-1935. PubMed ID: 32080961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling membraneless organelles from de novo designed proteins.
    Hilditch AT; Romanyuk A; Cross SJ; Obexer R; McManus JJ; Woolfson DN
    Nat Chem; 2024 Jan; 16(1):89-97. PubMed ID: 37710047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.