BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 36087865)

  • 1. Rational design of pH-activated upconversion luminescent nanoprobes for bioimaging of tumor acidic microenvironment and the enhancement of photothermal therapy.
    Tan B; Zhao C; Wang J; Tiemuer A; Zhang Y; Yu H; Liu Y
    Acta Biomater; 2023 Jan; 155():554-563. PubMed ID: 36087865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion-Magnetic Carbon Sphere for Near Infrared Light-Triggered Bioimaging and Photothermal Therapy.
    Wang J; Yao C; Shen B; Zhu X; Li Y; Shi L; Zhang Y; Liu J; Wang Y; Sun L
    Theranostics; 2019; 9(2):608-619. PubMed ID: 30809296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Albumin-based near-infrared phototheranostics for frequency upconversion luminescence/photoacoustic dual-modal imaging-guided photothermal therapy.
    Yu H; Tiemuer A; Zhu Y; Sun Y; Zhang Y; Liu L; Liu Y
    Biomater Sci; 2023 Jun; 11(13):4574-4582. PubMed ID: 37183589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MnCO
    Lee KK; Lee JH; Lee SC; Lee CS
    Theranostics; 2022; 12(15):6762-6778. PubMed ID: 36185599
    [No Abstract]   [Full Text] [Related]  

  • 5. Mn-Doped Nano-Hydroxyapatites as Theranostic Agents with Tumor pH-Amplified MRI-Signal Capabilities for Guiding Photothermal Therapy.
    Li C; Ding Z; Han Y
    Int J Nanomedicine; 2023; 18():6101-6118. PubMed ID: 37915749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pH reversibly activatable NIR photothermal/photodynamic-in-one agent integrated with renewable nanoimplants for image-guided precision phototherapy.
    Zhao X; Zhao KC; Chen LJ; Liu YS; Liu JL; Yan XP
    Chem Sci; 2020 Oct; 12(1):442-452. PubMed ID: 34163607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.
    Li Y; Liu G; Ma J; Lin J; Lin H; Su G; Chen D; Ye S; Chen X; Zhu X; Hou Z
    J Control Release; 2017 Jul; 258():95-107. PubMed ID: 28501673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy.
    Liu Q; Liu L; Mo C; Zhou X; Chen D; He Y; He H; Kang W; Zhao Y; Jin G
    J Nanobiotechnology; 2021 Jun; 19(1):171. PubMed ID: 34103070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable multistage small-molecule nano-photosensitizer for multimodal imaging-guided photothermal therapy.
    Ma H; Mu X; Tang Y; Li C; Wang Y; Lu Y; Zhou X; Li Z
    Acta Biomater; 2023 Feb; 157():408-416. PubMed ID: 36549634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling.
    Tang T; Huang B; Liu F; Cui R; Zhang M; Sun T
    Nanoscale; 2022 May; 14(20):7473-7479. PubMed ID: 35503233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic-Based Theranostic Probes Activated by Tumor Microenvironment for Accurate Tumor Diagnosis and Assisted Tumor Therapy.
    Tian F; Li F; Ren L; Wang Q; Jiang C; Zhang Y; Li M; Song X; Zhang S
    ACS Sens; 2022 Dec; 7(12):3611-3633. PubMed ID: 36455009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy.
    Zhang DY; Xu H; He T; Younis MR; Zeng L; Liu H; Jiang C; Lin J; Huang P
    Nanoscale; 2020 Apr; 12(13):7174-7179. PubMed ID: 32195531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-Soluble and Degradable Gelatin/Polyaniline Assemblies with a High Photothermal Conversion Efficiency for pH-Switchable Precise Photothermal Therapy.
    Li JW; Zhou Y; Xu J; Gao F; Si QK; Wang JY; Zhang F; Wang LP
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52670-52683. PubMed ID: 36379044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folate-receptor-targeted laser-activable poly(lactide-
    Liu F; Chen Y; Li Y; Guo Y; Cao Y; Li P; Wang Z; Gong Y; Ran H
    Int J Nanomedicine; 2018; 13():5139-5158. PubMed ID: 30233177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular conjugated cyanine fluorophore nanoparticles for tumor-responsive photo nanotheranostics.
    Cheng Q; Dang H; Tian Y; Teng C; Yin D; Yan L
    J Colloid Interface Sci; 2022 Nov; 626():453-465. PubMed ID: 35809437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folate receptor-targeted theranostic IrS
    Zhang DY; Zheng Y; Zhang H; Yang GG; Tan CP; He L; Ji LN; Mao ZW
    Nanoscale; 2018 Dec; 10(47):22252-22262. PubMed ID: 30465053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biocompatible theranostic agent based on stable bismuth nanoparticles for X-ray computed tomography/magnetic resonance imaging-guided enhanced chemo/photothermal/chemodynamic therapy for tumours.
    Zhao H; Wang J; Li X; Li Y; Li C; Wang X; Wang J; Guan S; Xu Y; Deng G; Chen Y; Lu J; Liu X
    J Colloid Interface Sci; 2021 Dec; 604():80-90. PubMed ID: 34265694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy.
    Wang Z; Zhen X; Upputuri PK; Jiang Y; Lau J; Pramanik M; Pu K; Xing B
    ACS Nano; 2019 May; 13(5):5816-5825. PubMed ID: 31034202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy.
    Li J; Liu C; Hu Y; Ji C; Li S; Yin M
    Theranostics; 2020; 10(1):166-178. PubMed ID: 31903113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HKUST-1 nano metal-organic frameworks combined with ZnGa
    Yu B; Wang YJ; Lin YY; Feng Y; Wu J; Liu WS; Wang M; Gao XP
    Nanoscale; 2022 Jun; 14(25):8978-8985. PubMed ID: 35687017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.