BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36087965)

  • 1. Synthesis and application of chitosan thiourea derivatives as chiral stationary phases in HPLC.
    Deng H; Wu X; Zhang L; Shen J; Qiao Y; Wang X; Bai C; Zheng T; Okamoto Y
    Carbohydr Polym; 2022 Nov; 296():119888. PubMed ID: 36087965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioseparation using chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Deng H; Wu X; Gao H; Shen J; Cao H; Qiao Y; Okamoto Y
    J Chromatogr A; 2020 Jul; 1623():461174. PubMed ID: 32505278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective modification at the 2,3- and 6-positions of chitosan with phenylcarbamates for chromatographic enantioseparation.
    Deng H; Qiao Y; Zheng T; Bai C; Wang G; Zhang L; Shen J
    J Chromatogr A; 2024 Jan; 1714():464503. PubMed ID: 38104505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactions between chiral analytes and chitosan-based chiral stationary phases during enantioseparation.
    Chen W; Jiang JZ; Qiu GS; Tang S; Bai ZW
    J Chromatogr A; 2021 Aug; 1650():462259. PubMed ID: 34090134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements in structure for chiral recognition of chitosan derivatives.
    Gao YY; Chen W; Bai ZW
    J Chromatogr A; 2023 Feb; 1690():463783. PubMed ID: 36657297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography.
    Wang J; Huang SH; Chen W; Bai ZW
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography.
    Shen J; Li G; Yang Z; Okamoto Y
    J Chromatogr A; 2016 Oct; 1467():199-205. PubMed ID: 27452988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography.
    Shen J; Zhao Y; Inagaki S; Yamamoto C; Shen Y; Liu S; Okamoto Y
    J Chromatogr A; 2013 Apr; 1286():41-6. PubMed ID: 23506702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Enantioseparation Ability of Xylan Bisphenylcarbamate Derivatives as Chiral Stationary Phases in HPLC.
    Li G; Shen J; Li Q; Okamoto Y
    Chirality; 2015 Aug; 27(8):518-22. PubMed ID: 26039871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Yamamoto C; Fujisawa M; Kamigaito M; Okamoto Y
    Chirality; 2008 Mar; 20(3-4):288-94. PubMed ID: 17597117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups.
    Shen J; Ikai T; Okamoto Y
    J Chromatogr A; 2010 Feb; 1217(7):1041-7. PubMed ID: 19647833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioseparation of isoxazolines with functionalized perphenylcarbamate cyclodextrin clicked chiral stationary phases in HPLC.
    Yang B; Zhou J; Wang Y; Tang J; Tang W
    Electrophoresis; 2017 Aug; 38(15):1939-1947. PubMed ID: 28176345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation.
    Shen J; Wang F; Bi W; Liu B; Liu S; Okamoto Y
    J Chromatogr A; 2018 Oct; 1572():54-61. PubMed ID: 30146373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of chiral separation materials derived from N-cyclohexylcarbonyl and N-hexanoyl chitosans.
    Tang S; Liu JD; Chen W; Huang SH; Zhang J; Bai ZW
    J Chromatogr A; 2018 Jan; 1532():112-123. PubMed ID: 29246422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioseparation of lysine derivatives on amylose tris (3, 5-dimethylphenylcarbamate) as chiral stationary phase with high separation factor.
    Yang Y; Hu J; Fang H; Hou X; Hou Z; Sang L; Yang X
    J Chromatogr A; 2020 Nov; 1632():461598. PubMed ID: 33038752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the substituents on phenyl groups on enantioseparation property of amylose phenylcarbamates.
    Bi W; Wang F; Han J; Liu B; Shen J; Zhang L; Okamoto Y
    Carbohydr Polym; 2020 Aug; 241():116372. PubMed ID: 32507194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations.
    Tang S; Jin Z; Sun B; Wang F; Tang W
    Chirality; 2017 Sep; 29(9):512-521. PubMed ID: 28635058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.