BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36087974)

  • 1. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers.
    Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X
    Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers.
    Chen C; Huang D; Yang Q; Wang G; Wang X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126645. PubMed ID: 37659487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Pulping Advantages of Zip-lignin Hybrid Poplar.
    Zhou S; Runge T; Karlen SD; Ralph J; Gonzales-Vigil E; Mansfield SD
    ChemSusChem; 2017 Sep; 10(18):3565-3573. PubMed ID: 28768066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: Formation mechanism of disordered regions along each cellulose microfibril.
    Funahashi R; Ono Y; Tanaka R; Yokoi M; Daido K; Inamochi T; Saito T; Horikawa Y; Isogai A
    Int J Biol Macromol; 2018 Apr; 109():914-920. PubMed ID: 29146560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers.
    Yu W; Yi Y; Wang H; Yang Y; Xing C; Zeng L; Tang J; Tan Z
    Carbohydr Polym; 2022 Dec; 298():120112. PubMed ID: 36241286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water.
    Sirviö JA; Visanko M
    J Hazard Mater; 2020 Feb; 383():121174. PubMed ID: 31522065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation.
    Yan M; Tian C; Wu T; Huang X; Zhong Y; Yang P; Zhang L; Ma J; Lu H; Zhou X
    Int J Biol Macromol; 2021 Nov; 191():422-431. PubMed ID: 34563572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping.
    Yao L; Hu S; Wang X; Lin M; Zhang C; Chen Y; Yue F; Qi H
    Carbohydr Polym; 2022 Aug; 290():119480. PubMed ID: 35550769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment.
    Ahuja D; Kaushik A; Singh M
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balancing the effect of pretreatment severity on hemicellulose extraction and pulping performance during auto-hydrolysis prior to kraft pulping of acacia wood.
    Shi H; Zhou M; Jia W; Li N; Niu M
    Biotechnol Prog; 2019 May; 35(3):e2784. PubMed ID: 30748127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Esterified cellulose nanofibres from saw dust using vegetable oil.
    Mokhena TC; John MJ
    Int J Biol Macromol; 2020 Apr; 148():1109-1117. PubMed ID: 32004608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment.
    Wang X; Zeng J; Zhu JY
    Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment.
    Shi Z; Yang Q; Kuga S; Matsumoto Y
    J Agric Food Chem; 2015 Jul; 63(27):6113-9. PubMed ID: 26101792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers.
    Liu S; Zhang Q; Gou S; Zhang L; Wang Z
    Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Transparent Nanocomposites Based on Poly(vinyl alcohol) and Sulfated UV-Absorbing Wood Nanofibers.
    Sirviö JA; Visanko M
    Biomacromolecules; 2019 Jun; 20(6):2413-2420. PubMed ID: 31030511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.