These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36087977)

  • 1. Tissue-like electrophysiological electrode interface construction by multiple crosslinked polysaccharide-based hydrogel.
    Chen Z; Liu X; Ding J; Tian Y; Zhang Y; Wei D; Sun J; Luo F; Zhou L; Fan H
    Carbohydr Polym; 2022 Nov; 296():119923. PubMed ID: 36087977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive tissue-like hydrogel interface through template-directed assembly.
    Chong J; Sung C; Nam KS; Kang T; Kim H; Lee H; Park H; Park S; Kang J
    Nat Commun; 2023 Apr; 14(1):2206. PubMed ID: 37072411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel.
    Ahn Y; Lee H; Lee D; Lee Y
    ACS Appl Mater Interfaces; 2014; 6(21):18401-7. PubMed ID: 25347028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine induced multiple bonding in hyaluronic acid network to construct particle-free conductive hydrogel for reliable electro-biosensing.
    Zeng MZ; Wei D; Ding J; Tian Y; Wu XY; Chen ZH; Wu CH; Sun J; Yin HB; Fan HS
    Carbohydr Polym; 2023 Feb; 302():120403. PubMed ID: 36604075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety.
    Wu S; Wu S; Zhang X; Feng T; Wu L
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.
    Li G; Huang K; Deng J; Guo M; Cai M; Zhang Y; Guo CF
    Adv Mater; 2022 Apr; 34(15):e2200261. PubMed ID: 35170097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for hydrogel applications to neural bioelectronics.
    Goding J; Vallejo-Giraldo C; Syed O; Green R
    J Mater Chem B; 2019 Mar; 7(10):1625-1636. PubMed ID: 32254905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance.
    Roubert Martinez S; Le Floch P; Liu J; Howe RD
    Adv Healthc Mater; 2023 Jul; 12(17):e2202661. PubMed ID: 36867669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-Tissue Interface Interactions for Implantable Flexible Bioelectronics.
    Cong Y; Fu J
    Langmuir; 2022 Sep; 38(38):11503-11513. PubMed ID: 36113043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtration-processed biomass nanofiber electrodes for flexible bioelectronics.
    Ando D; Teshima TF; Zurita F; Peng H; Ogura K; Kondo K; Weiß L; Hirano-Iwata A; Becherer M; Alexander J; Wolfrum B
    J Nanobiotechnology; 2022 Nov; 20(1):491. PubMed ID: 36403048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation.
    Zhang J; Wang L; Xue Y; Lei IM; Chen X; Zhang P; Cai C; Liang X; Lu Y; Liu J
    Adv Mater; 2023 Jan; 35(3):e2209324. PubMed ID: 36398434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network.
    Nam J; Lim HK; Kim NH; Park JK; Kang ES; Kim YT; Heo C; Lee OS; Kim SG; Yun WS; Suh M; Kim YH
    ACS Nano; 2020 Jan; 14(1):664-675. PubMed ID: 31895542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Adherent Biodegradable Gelatin-Based Hydrogel Electrodes for Electrocardiography Monitoring.
    Lee Y; Yim SG; Lee GW; Kim S; Kim HS; Hwang DY; An BS; Lee JH; Seo S; Yang SY
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical bioadhesive interface for bioelectronics.
    Deng J; Yuk H; Wu J; Varela CE; Chen X; Roche ET; Guo CF; Zhao X
    Nat Mater; 2021 Feb; 20(2):229-236. PubMed ID: 32989277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue adhesive hydrogel bioelectronics.
    Li S; Cong Y; Fu J
    J Mater Chem B; 2021 Jun; 9(22):4423-4443. PubMed ID: 33908586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing.
    Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X
    Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformable polyimide-based μECoGs: Bringing the electrodes closer to the signal source.
    Vomero M; Porto Cruz MF; Zucchini E; Ciarpella F; Delfino E; Carli S; Boehler C; Asplund M; Ricci D; Fadiga L; Stieglitz T
    Biomaterials; 2020 Oct; 255():120178. PubMed ID: 32569863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.
    Hassarati RT; Marcal H; John L; Foster R; Green RA
    J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):712-22. PubMed ID: 26248597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft electrodes combining hydrogel and liquid metal.
    Shay T; Velev OD; Dickey MD
    Soft Matter; 2018 May; 14(17):3296-3303. PubMed ID: 29670971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.