BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36088021)

  • 1. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: Applications in its chemical derivatives.
    Gonzalez M; Pereira-Rojas J; Villanueva I; Agüero B; Silva I; Velasquez I; Delgado B; Hernandez J; Rodriguez G; Labrador H; Barros H; Pereira J
    Carbohydr Polym; 2022 Nov; 296():119918. PubMed ID: 36088021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S; Flores-Alamo N; Tecante A
    Int J Biol Macromol; 2020 Jul; 155():324-329. PubMed ID: 32234444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials.
    Pereira PHF; Ornaghi HL; Arantes V; Cioffi MOH
    Carbohydr Res; 2021 Jan; 499():108227. PubMed ID: 33388571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of molecular and supramolecular assemblies of cellulose and lignin of lignocellulosic materials by spectroscopy and thermal analysis.
    Ufodike CO; Eze VO; Ahmed MF; Oluwalowo A; Park JG; Liang Z; Wang H
    Int J Biol Macromol; 2020 Mar; 146():916-921. PubMed ID: 31726119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose.
    Chakraborty I; Rongpipi S; Govindaraju I; B R; Mal SS; Gomez EW; Gomez ED; Kalita RD; Nath Y; Mazumder N
    Microsc Res Tech; 2022 May; 85(5):1990-2015. PubMed ID: 35040538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw.
    Kontogianni N; Barampouti EM; Mai S; Malamis D; Loizidou M
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35648-35656. PubMed ID: 31792789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem.
    Birlie B; Mamay T
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid analysis of purified cellulose extracted from perennial ryegrass (Lolium perenne) by instrumental analysis.
    Lyons GA; McRoberts C; Sharma HS; McCormack R; Carmichael E; McCall RD
    Bioresour Technol; 2013 Oct; 146():184-191. PubMed ID: 23933026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers.
    Chen C; Huang D; Yang Q; Wang G; Wang X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126645. PubMed ID: 37659487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obtaining of a rich-cellulose material from black wattle (Acacia mearnsii De Wild.) bark residues.
    Rodrigues TL; Pedroso PDC; de Freitas JHC; Carvalho ACP; Flores WH; Morais MM; da Rosa GS; de Almeida ARF
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):113055-113067. PubMed ID: 37848795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of Byproducts of Hemp Multipurpose Crop: Short Non-Aligned Bast Fibers as a Source of Nanocellulose.
    Dalle Vacche S; Karunakaran V; Patrucco A; Zoccola M; Douard L; Ronchetti S; Gallo M; Schreier A; Leterrier Y; Bras J; Beneventi D; Bongiovanni R
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites.
    Fiore V; Scalici T; Valenza A
    Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity.
    Tian D; Guo Y; Hu J; Yang G; Zhang J; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Jan; 142():288-297. PubMed ID: 31593728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation.
    Fei X; Jia W; Wang J; Chen T; Ling Y
    Int J Biol Macromol; 2020 Feb; 145():733-739. PubMed ID: 31887387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment.
    Moniruzzaman M; Ono T
    Bioresour Technol; 2013 Jan; 127():132-7. PubMed ID: 23131633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent.
    Morais ES; Da Costa Lopes AM; Freire MG; Freire CSR; Silvestre AJD
    ChemSusChem; 2021 Jan; 14(2):686-698. PubMed ID: 33211400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K; Rajendran I
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Cellulosic Microfibers from Coffee Pulp via Alkaline Treatment, Bleaching and Acid Hydrolysis.
    Rodriguez-Quiroz ES; Olivares-Xometl O; Santacruz-Vázquez V; Santacruz-Vázquez C; Arellanes-Lozada P; Rubio-Rosas E
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.