These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36088353)

  • 1. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations.
    Li CY; Chen M; Liu S; Lu X; Meng J; Yan J; Abruña HD; Feng G; Lian T
    Nat Commun; 2022 Sep; 13(1):5330. PubMed ID: 36088353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes.
    Amiri M; Bélanger D
    ChemSusChem; 2021 Jun; 14(12):2487-2500. PubMed ID: 33973406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute.
    Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M
    Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability.
    Vatamanu J; Borodin O
    J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte.
    Lim J; Park K; Lee H; Kim J; Kwak K; Cho M
    J Am Chem Soc; 2018 Nov; 140(46):15661-15667. PubMed ID: 30358996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Electrode-Electrolyte Interfaces of Ionic Liquids and Deep Eutectic Solvents.
    Coskun OK; Muñoz M; Dongare S; Dean W; Gurkan BE
    Langmuir; 2024 Feb; 40(7):3283-3300. PubMed ID: 38341773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorophosphate-Based Nonflammable Concentrated Electrolytes with a Designed Lithium-Ion-Ordered Structure: Relationship between the Bulk Electrolyte and Electrode Interface Structures.
    Sawayama S; Morinaga A; Mimura H; Morita M; Katayama Y; Fujii K
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6201-6207. PubMed ID: 33502162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water dynamics and sum-frequency generation spectra at electrode/aqueous electrolyte interfaces.
    Olivieri JF; Hynes JT; Laage D
    Faraday Discuss; 2024 Feb; 249(0):289-302. PubMed ID: 37791579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation valency in water-in-salt electrolytes alters the short- and long-range structure of the electrical double layer.
    Berlinger SA; Küpers V; Dudenas PJ; Schinski D; Flagg L; Lamberty ZD; McCloskey BD; Winter M; Frechette J
    Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2404669121. PubMed ID: 39047037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial molecular structure of phosphazene-based polymer electrolyte at the air-aqueous interface using sum frequency generation vibrational spectroscopy.
    Kaur S; Tomar D; Chaudhary M; Rana B; Kaur H; Nigam V; Jena KC
    J Phys Condens Matter; 2023 Dec; 36(10):. PubMed ID: 37988750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces.
    Steinrück HG; Cao C; Lukatskaya MR; Takacs CJ; Wan G; Mackanic DG; Tsao Y; Zhao J; Helms BA; Xu K; Borodin O; Wishart JF; Toney MF
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23180-23187. PubMed ID: 32881197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Electrode-Electrolyte Interface of a Model K-Ion Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes.
    Lemaire P; Serva A; Salanne M; Rousse G; Perrot H; Sel O; Tarascon JM
    ACS Appl Mater Interfaces; 2022 May; 14(18):20835-20847. PubMed ID: 35481776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Forces and Structure in a Water-in-Salt Electrolyte.
    Groves TS; Perez-Martinez CS; Lhermerout R; Perkin S
    J Phys Chem Lett; 2021 Feb; 12(6):1702-1707. PubMed ID: 33560858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Electric Double Layer at the Electrode-Electrolyte Interface: Part I - No Ion Specific Adsorption.
    Mazur DA; Brandyshev PE; Doronin SV; Budkov YA
    Chemphyschem; 2024 Dec; 25(23):e202400650. PubMed ID: 39133572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of anionic nanoclusters at the electrode interface in water-in-salt electrolytes.
    Zhang L; Yu Y; Suo L; Zhuang W; He L; Zhang X; Hong L; Tan P
    Phys Chem Chem Phys; 2023 Apr; 25(15):10301-10312. PubMed ID: 36987745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.