These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36088522)

  • 1. Management of chromium(VI)-contaminated soils through synergistic application of vermicompost, chromate reducing rhizobacteria and Arbuscular mycorrhizal fungi (AMF) reduced plant toxicity and improved yield attributes in Ocimum basilicum L.
    Soni SK; Singh R; Tiwari S
    Arch Microbiol; 2022 Sep; 204(10):614. PubMed ID: 36088522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi.
    Soni SK; Singh R; Awasthi A; Kalra A
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1971-1979. PubMed ID: 24014225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil.
    Soni SK; Kumar G; Bajpai A; Singh R; Bajapi Y; Laxmi ; Tiwari S
    J Trace Elem Med Biol; 2023 Mar; 76():127116. PubMed ID: 36481602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.
    Soni SK; Singh R; Singh M; Awasthi A; Wasnik K; Kalra A
    Arch Environ Contam Toxicol; 2014 May; 66(4):616-27. PubMed ID: 24535090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil.
    Soni SK; Singh R; Awasthi A; Singh M; Kalra A
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1661-74. PubMed ID: 22983604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of vermicompost and mycorrhizal inoculation on arsenic tolerance and phytostabilization in safflower (Carthamus tinctorius L.).
    Salari H; Amooaghaie R; Mozafari H
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21947-21961. PubMed ID: 38400962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.
    Wu SL; Chen BD; Sun YQ; Ren BH; Zhang X; Wang YS
    Environ Toxicol Chem; 2014 Sep; 33(9):2105-13. PubMed ID: 24920536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM-EDS, TEM-EDS, and XAFS.
    Wu S; Zhang X; Sun Y; Wu Z; Li T; Hu Y; Su D; Lv J; Li G; Zhang Z; Zheng L; Zhang J; Chen B
    Environ Sci Technol; 2015 Dec; 49(24):14036-47. PubMed ID: 26551890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycorrhizosphere bacteria inhibit chromium uptake and phytotoxicity by regulating proline metabolism, antioxidant defense system, and aquaporin gene expression in tomato.
    Shah T; Khan Z; Alahmadi TA; Imran A; Asad M; Khan SR; Ansari MJ
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):24836-24850. PubMed ID: 38456983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    Tamindžija D; Chromikova Z; Spaić A; Barak I; Bernier-Latmani R; Radnović D
    World J Microbiol Biotechnol; 2019 Mar; 35(4):56. PubMed ID: 30900044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.
    Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R
    J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H
    Sharma V; Garg N
    Biometals; 2024 Feb; 37(1):185-209. PubMed ID: 37792256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil applied glycine betaine with Arbuscular mycorrhizal fungi reduces chromium uptake and ameliorates chromium toxicity by suppressing the oxidative stress in three genetically different Sorghum (Sorghum bicolor L.) cultivars.
    Kumar P
    BMC Plant Biol; 2021 Jul; 21(1):336. PubMed ID: 34261429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils.
    Maqbool Z; Asghar HN; Shahzad T; Hussain S; Riaz M; Ali S; Arif MS; Maqsood M
    Ecotoxicol Environ Saf; 2015 Apr; 114():343-9. PubMed ID: 25066609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.
    Sarangi A; Krishnan C
    Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.
    Mishra V; Gupta A; Kaur P; Singh S; Singh N; Gehlot P; Singh J
    Int J Phytoremediation; 2016; 18(7):697-703. PubMed ID: 26682583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite.
    Antoniadis V; Zanni AA; Levizou E; Shaheen SM; Dimirkou A; Bolan N; Rinklebe J
    Chemosphere; 2018 Mar; 195():291-300. PubMed ID: 29272798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1.
    He M; Li X; Guo L; Miller SJ; Rensing C; Wang G
    BMC Microbiol; 2010 Aug; 10():221. PubMed ID: 20723231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential strategies of two species of arbuscular mycorrhizal fungi in the protection of maize plants grown in chromium-contaminated soils.
    de Los Angeles Beltrán-Nambo M; Rojas-Jacuinde N; Martínez-Trujillo M; Jaramillo-López PF; Romero MG; Carreón-Abud Y
    Biometals; 2021 Dec; 34(6):1247-1261. PubMed ID: 34417897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.