These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36088657)

  • 1. Flood risk mapping and analysis using an integrated framework of machine learning models and analytic hierarchy process.
    Bui QD; Luu C; Mai SH; Ha HT; Ta HT; Pham BT
    Risk Anal; 2023 Jul; 43(7):1478-1495. PubMed ID: 36088657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches.
    Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA
    Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping flood risk.
    Mohammadifar A; Gholami H; Golzari S
    J Environ Manage; 2023 Nov; 345():118838. PubMed ID: 37595460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping.
    Abrar MF; Iman YE; Mustak MB; Pal SK
    Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment.
    Singha C; Rana VK; Pham QB; Nguyen DC; Ɓupikasza E
    Environ Sci Pollut Res Int; 2024 Jul; 31(35):48497-48522. PubMed ID: 39030454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM
    Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India.
    Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles.
    Costache R; Tien Bui D
    Sci Total Environ; 2020 Apr; 712():136492. PubMed ID: 31927448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India.
    Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL
    Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flood vulnerability mapping and urban sprawl suitability using FR, LR, and SVM models.
    Youssef AM; Pourghasemi HR; Mahdi AM; Matar SS
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16081-16105. PubMed ID: 36178648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh.
    Nahin KTK; Islam SB; Mahmud S; Hossain I
    Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of hard and soft supervised machine learning for flood susceptibility mapping.
    Andaryani S; Nourani V; Haghighi AT; Keesstra S
    J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions.
    Deroliya P; Ghosh M; Mohanty MP; Ghosh S; Rao KHVD; Karmakar S
    Sci Total Environ; 2022 Dec; 851(Pt 1):158002. PubMed ID: 35985595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon
    Khosravi K; Pourghasemi HR; Chapi K; Bahri M
    Environ Monit Assess; 2016 Dec; 188(12):656. PubMed ID: 27826821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method.
    Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.
    Saha TK; Pal S; Talukdar S; Debanshi S; Khatun R; Singha P; Mandal I
    J Environ Manage; 2021 Nov; 297():113344. PubMed ID: 34314957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.