These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36088692)

  • 1. A robust, low swelling, and lipid-lubricated hydrogel for bionic articular cartilage substitute.
    Xiao F; Tang J; Huang X; Kang W; Zhou G
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):467-477. PubMed ID: 36088692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage-bioinspired, tough and lubricated hydrogel based on nanocomposite enhancement effect.
    Xiao F; Zheng P; Tang J; Huang X; Kang W; Zhou G; Sun K
    J Mater Chem B; 2023 May; 11(21):4763-4775. PubMed ID: 37183499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage.
    Chen Q; Zhang X; Chen K; Feng C; Wang D; Qi J; Li X; Zhao X; Chai Z; Zhang D
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52347-52358. PubMed ID: 36349936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications.
    Chen Y; Song J; Wang S; Liu W
    Macromol Biosci; 2023 Jan; 23(1):e2200275. PubMed ID: 36254859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels.
    Lin W; Klein J
    Acc Mater Res; 2022 Feb; 3(2):213-223. PubMed ID: 35243350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun fibrous membrane reinforced hydrogels with preferable mechanical and tribological performance as cartilage substitutes.
    Chen Q; Yan X; Chen K; Feng C; Wang D; Li X; Zhao X; Chai Z; Wang Q; Zhang D; Zeng H
    J Mater Chem B; 2023 Feb; 11(8):1713-1724. PubMed ID: 36723224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring hydrogel surface properties to modulate cellular response to shear loading.
    Meinert C; Schrobback K; Levett PA; Lutton C; Sah RL; Klein TJ
    Acta Biomater; 2017 Apr; 52():105-117. PubMed ID: 27729233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage.
    Katta J; Stapleton T; Ingham E; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2008 Jan; 222(1):1-11. PubMed ID: 18335713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage.
    Luo C; Guo A; Zhao Y; Sun X
    Carbohydr Polym; 2022 Jun; 286():119268. PubMed ID: 35337498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.
    Li F; Wang A; Wang C
    J Mater Sci Mater Med; 2016 May; 27(5):87. PubMed ID: 26970769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review.
    Murakami T; Yarimitsu S; Nakashima K; Sakai N; Yamaguchi T; Sawae Y; Suzuki A
    Proc Inst Mech Eng H; 2015 Dec; 229(12):864-78. PubMed ID: 26614800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.
    Blum MM; Ovaert TC
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4377-83. PubMed ID: 23910356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants].
    Meng H; Zheng Y; Huang X; Yue B; Xu H; Wang Y; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1056-61. PubMed ID: 21089670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage-inspired, lipid-based boundary-lubricated hydrogels.
    Lin W; Kluzek M; Iuster N; Shimoni E; Kampf N; Goldberg R; Klein J
    Science; 2020 Oct; 370(6514):335-338. PubMed ID: 33060358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Design of a Cartilage-like Lubricated Composite with Mechanical Robustness.
    Zhao W; Zhang Y; Zhao X; Ji Z; Ma Z; Gao X; Ma S; Wang X; Zhou F
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9899-9908. PubMed ID: 35138095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement.
    Wang Z; Meng F; Zhang Y; Guo H
    Langmuir; 2023 Feb; 39(6):2368-2379. PubMed ID: 36725688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microgel-Modified Bilayered Hydrogels Dramatically Boosting Load-Bearing and Lubrication.
    Lin P; Fu D; Zhang T; Ma S; Zhou F
    ACS Macro Lett; 2023 Nov; 12(11):1450-1456. PubMed ID: 37842942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus Hydrogel to Mimic the Structure and Property of Articular Cartilage.
    Luo C; Guo A; Li J; Tang Z; Luo F
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35434-35443. PubMed ID: 35913200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage-like tribological performance of charged double network hydrogels.
    Bonyadi SZ; Demott CJ; Grunlan MA; Dunn AC
    J Mech Behav Biomed Mater; 2021 Feb; 114():104202. PubMed ID: 33243694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cartilage Mimics Adaptive Lubrication.
    Liu H; Zhao X; Zhang Y; Ma S; Ma Z; Pei X; Cai M; Zhou F
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51114-51121. PubMed ID: 33140650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.