These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 36088891)

  • 1. IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation.
    Wu X; Chen Y; Li X; Liu X; Liu Y; Wu Y; Li M; Zhou X; Wang C
    Comput Methods Programs Biomed; 2022 Oct; 225():107106. PubMed ID: 36088891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.
    Su Z; Rezapour M; Sajjad U; Gurcan MN; Niazi MKK
    Comput Biol Med; 2023 Dec; 167():107607. PubMed ID: 37890421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convex formulation of multiple instance learning from positive and unlabeled bags.
    Bao H; Sakai T; Sato I; Sugiyama M
    Neural Netw; 2018 Sep; 105():132-141. PubMed ID: 29804041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification.
    Zhu Z; Yu L; Wu W; Yu R; Zhang D; Wang L
    IEEE Trans Med Imaging; 2023 May; 42(5):1337-1348. PubMed ID: 37015475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal multiple instance learning framework for whole slide image analysis.
    Zhang X; Liu C; Zhu H; Wang T; Du Z; Ding W
    Comput Biol Med; 2024 Aug; 178():108714. PubMed ID: 38889627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning.
    Li B; Li Y; Eliceiri KW
    Conf Comput Vis Pattern Recognit Workshops; 2021 Jun; 2021():14318-14328. PubMed ID: 35047230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.
    Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative multiple instance learning for weakly annotated whole slide image classification.
    Zhou Y; Che S; Lu F; Liu S; Yan Z; Wei J; Li Y; Ding X; Lu Y
    Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37311470
    [No Abstract]   [Full Text] [Related]  

  • 9. Weakly supervised histopathology image segmentation with self-attention.
    Li K; Qian Z; Han Y; Chang EI; Wei B; Lai M; Liao J; Fan Y; Xu Y
    Med Image Anal; 2023 May; 86():102791. PubMed ID: 36933385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images.
    Juang CF; Chuang YW; Lin GW; Chung IF; Lo YC
    Comput Med Imaging Graph; 2024 Jul; 115():102375. PubMed ID: 38599040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GAN-based image synthesis method for skin lesion classification.
    Qin Z; Liu Z; Zhu P; Xue Y
    Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images.
    Wang X; Tang F; Chen H; Cheung CY; Heng PA
    Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-Bag Mixup Augmentation for Multiple Instance Learning-Based Whole Slide Image Classification.
    Liu P; Ji L; Zhang X; Ye F
    IEEE Trans Med Imaging; 2024 May; 43(5):1841-1852. PubMed ID: 38194395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification.
    Bai Y; Li W; An J; Xia L; Chen H; Zhao G; Gao Z
    Comput Methods Programs Biomed; 2024 Feb; 244():107936. PubMed ID: 38016392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and limitations of a supervised deep learning approach for the histopathological Oxford Classification of glomeruli with IgA nephropathy.
    Altini N; Rossini M; Turkevi-Nagy S; Pesce F; Pontrelli P; Prencipe B; Berloco F; Seshan S; Gibier JB; Pedraza Dorado A; Bueno G; Peruzzi L; Rossi M; Eccher A; Li F; Koumpis A; Beyan O; Barratt J; Vo HQ; Mohan C; Nguyen HV; Cicalese PA; Ernst A; Gesualdo L; Bevilacqua V; Becker JU
    Comput Methods Programs Biomed; 2023 Dec; 242():107814. PubMed ID: 37722311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images.
    Dov D; Kovalsky SZ; Assaad S; Cohen J; Range DE; Pendse AA; Henao R; Carin L
    Med Image Anal; 2021 Jan; 67():101814. PubMed ID: 33049578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection.
    Remedios SW; Wu Z; Bermudez C; Kerley CI; Roy S; Patel MB; Butman JA; Landman BA; Pham DL
    Proc SPIE Int Soc Opt Eng; 2020; 11313():. PubMed ID: 34040275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A similarity-based classification framework for multiple-instance learning.
    Xiao Y; Liu B; Hao Z; Cao L
    IEEE Trans Cybern; 2014 Apr; 44(4):500-15. PubMed ID: 23757564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proportion constrained weakly supervised histopathology image classification.
    Silva-Rodríguez J; Schmidt A; Sales MA; Molina R; Naranjo V
    Comput Biol Med; 2022 Aug; 147():105714. PubMed ID: 35753089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel multiple instance learning method based on extreme learning machine.
    Wang J; Cai L; Peng J; Jia Y
    Comput Intell Neurosci; 2015; 2015():405890. PubMed ID: 25705220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.