These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36088919)

  • 1. Multi-scale satellite observations of Arctic sea ice: new insight into the life cycle of the floe size distribution.
    Hwang B; Wang Y
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210259. PubMed ID: 36088919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical framework for the emergent floe size distribution in the marginal ice zone: the case for log-normality.
    Montiel F; Mokus N
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210257. PubMed ID: 36088932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the Arctic wave-affected marginal ice zone: a comparison with ICESat-2 observations.
    Boutin G; Williams T; Horvat C; Brodeau L
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210262. PubMed ID: 36088922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floes, the marginal ice zone and coupled wave-sea-ice feedbacks.
    Horvat C
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210252. PubMed ID: 36088924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular effects in sea ice rheology in the marginal ice zone.
    Herman A
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210260. PubMed ID: 36088933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prognosticative synopsis of contemporary marginal ice zone research.
    Squire VA
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20220094. PubMed ID: 36088917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling attenuation of irregular wave fields by artificial ice floes in the laboratory.
    Toffoli A; Pitt JPA; Alberello A; Bennetts LG
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210255. PubMed ID: 36088929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks.
    Bennetts LG; Bitz CM; Feltham DL; Kohout AL; Meylan MH
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210265. PubMed ID: 36088926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling wave-induced sea ice break-up in the marginal ice zone.
    Montiel F; Squire VA
    Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170258. PubMed ID: 29118659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-dynamics simulation of clustering processes in sea-ice floes.
    Herman A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056104. PubMed ID: 22181470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the size and shape of sea ice floes.
    Gherardi M; Lagomarsino MC
    Sci Rep; 2015 May; 5():10226. PubMed ID: 26014797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wind waves in sea ice of the western Arctic and a global coupled wave-ice model.
    Cooper VT; Roach LA; Thomson J; Brenner SD; Smith MM; Meylan MH; Bitz CM
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210258. PubMed ID: 36088918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpectedly high dimethyl sulfide concentration in high-latitude Arctic sea ice melt ponds.
    Park K; Kim I; Choi JO; Lee Y; Jung J; Ha SY; Kim JH; Zhang M
    Environ Sci Process Impacts; 2019 Oct; 21(10):1642-1649. PubMed ID: 31465050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginal ice zone dynamics: future research perspectives and pathways.
    Bennetts LG; Bitz CM; Feltham DL; Kohout AL; Meylan MH
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2235):20210267. PubMed ID: 36088930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete-element model for the interaction between ocean waves and sea ice.
    Xu Z; Tartakovsky AM; Pan W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016703. PubMed ID: 22400697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decadal Bering Sea seascape change: consequences for Pacific walruses and indigenous hunters.
    Ray GC; Hufford GL; Overland JE; Krupnik I; McCormick-Ray J; Frey K; Labunski E
    Ecol Appl; 2016 Jan; 26(1):24-41. PubMed ID: 27039507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne Observations of Summer Thinning of Multiyear Sea Ice Originating From the Lincoln Sea.
    Lange BA; Beckers JF; Casey JA; Haas C
    J Geophys Res Oceans; 2019 Jan; 124(1):243-266. PubMed ID: 31007996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice.
    Pućko M; Stern GA; Barber DG; Macdonald RW; Warner KA; Fuchs C
    Environ Sci Technol; 2012 Nov; 46(21):11862-9. PubMed ID: 23039929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale oil-in-ice experiment in the Barents Sea: monitoring of oil in water and MetOcean interactions.
    Faksness LG; Brandvik PJ; Daae RL; Leirvik F; Børseth JF
    Mar Pollut Bull; 2011 May; 62(5):976-84. PubMed ID: 21396663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The delivery of organic contaminants to the Arctic food web: why sea ice matters.
    Pućko M; Stern GA; Macdonald RW; Jantunen LM; Bidleman TF; Wong F; Barber DG; Rysgaard S
    Sci Total Environ; 2015 Feb; 506-507():444-52. PubMed ID: 25437762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.