BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36089142)

  • 1. Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study.
    Kwak J; Lee SH; Shin J; Lee YG; Kim S; Son C; Ren X; Shin JK; Park Y; Chon K
    Environ Pollut; 2022 Nov; 313():120138. PubMed ID: 36089142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in adsorption mechanisms of radioactive barium, cobalt, and strontium ions using spent coffee waste biochars via alkaline chemical activation: Enrichment effects of O-containing functional groups.
    Shin J; Kwak J; Lee YG; Kim S; Son C; Cho KH; Lee SH; Park Y; Ren X; Chon K
    Environ Res; 2021 Aug; 199():111346. PubMed ID: 34019898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process.
    Nguyen VT; Vo TD; Nguyen TB; Dat ND; Huu BT; Nguyen XC; Tran T; Le TN; Duong TG; Bui MH; Dong CD; Bui XT
    Chemosphere; 2022 Feb; 288(Pt 2):132577. PubMed ID: 34662641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO
    El-Azazy M; El-Shafie AS; Morsy H
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions.
    Shin J; Kwak J; Lee YG; Kim S; Choi M; Bae S; Lee SH; Park Y; Chon K
    Environ Pollut; 2021 Feb; 270():116244. PubMed ID: 33321433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr
    Shin J; Lee SH; Kim S; Ochir D; Park Y; Kim J; Lee YG; Chon K
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40623-40632. PubMed ID: 32677012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced selectivity and recovery of phosphate and nitrate ions onto coffee ground waste biochars via co-precipitation of Mg/Al layered double hydroxides: A potential slow-release fertilizer.
    Shin J; Kwak J; Kim S; Son C; Kang B; Lee YG; Chon K
    Environ Res; 2023 Aug; 231(Pt 3):116266. PubMed ID: 37257744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach.
    Hgeig A; Novaković M; Mihajlović I
    J Environ Sci Health B; 2019; 54(4):226-236. PubMed ID: 30633640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar.
    Zhang X; Zhang Y; Ngo HH; Guo W; Wen H; Zhang D; Li C; Qi L
    Sci Total Environ; 2020 May; 716():137015. PubMed ID: 32036134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds.
    Liu Y; Wang S; Huo J; Zhang X; Wen H; Zhang D; Zhao Y; Kang D; Guo W; Ngo HH
    Sci Total Environ; 2024 Jan; 909():168426. PubMed ID: 37944608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground.
    Nguyen VT; Nguyen TB; Chen CW; Hung CM; Vo TD; Chang JH; Dong CD
    Bioresour Technol; 2019 Jul; 284():197-203. PubMed ID: 30939381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism.
    Ahmed W; Núñez-Delgado A; Mehmood S; Ali S; Qaswar M; Shakoor A; Chen DY
    Environ Res; 2021 Oct; 201():111518. PubMed ID: 34129867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds.
    Shin J; Lee YG; Lee SH; Kim S; Ochir D; Park Y; Kim J; Chon K
    J Hazard Mater; 2020 Dec; 400():123102. PubMed ID: 32947732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism.
    Liao J; He X; Zhang Y; Zhu W; Zhang L; He Z
    Sci Total Environ; 2022 May; 819():153145. PubMed ID: 35038520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis.
    Lata S; Prabhakar R; Adak A; Samadder SR
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32175-32188. PubMed ID: 31494845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc-based triazole metal complexes for efficient iodine adsorption in water.
    Qin J; Zhang W; Chen Y; Liu R; Fan Y
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28797-28807. PubMed ID: 33548041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using recycled coffee grounds for the synthesis of ZIF-8@BC to remove Congo red in water.
    Liang Y; Li H; Li X; Zhang Q; Fei J; Li S; Chen S
    Ecotoxicol Environ Saf; 2022 May; 236():113450. PubMed ID: 35364506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced As(III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites.
    Lin L; Song Z; Khan ZH; Liu X; Qiu W
    Sci Total Environ; 2019 Oct; 686():1185-1193. PubMed ID: 31412514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials.
    Loffredo E; Taskin E
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19159-19166. PubMed ID: 28664489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution.
    Dong J; Shen L; Shan S; Liu W; Qi Z; Liu C; Gao X
    Sci Total Environ; 2022 Feb; 806(Pt 4):151442. PubMed ID: 34742966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.