These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36089253)

  • 1. Trait drift in microalgae and applications for strain improvement.
    Jebali A; Sanchez MR; Hanschen ER; Starkenburg SR; Corcoran AA
    Biotechnol Adv; 2022 Nov; 60():108034. PubMed ID: 36089253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
    Ng IS; Tan SI; Kao PH; Chang YK; Chang JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28786539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgae-based carbohydrates: A green innovative source of bioenergy.
    de Carvalho Silvello MA; Severo Gonçalves I; Patrícia Held Azambuja S; Silva Costa S; Garcia Pereira Silva P; Oliveira Santos L; Goldbeck R
    Bioresour Technol; 2022 Jan; 344(Pt B):126304. PubMed ID: 34752879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal flocculation: Global research progress and prospects for algal biorefinery.
    Malik S; Khan F; Atta Z; Habib N; Haider MN; Wang N; Alam A; Jambi EJ; Gull M; Mehmood MA; Zhu H
    Biotechnol Appl Biochem; 2020 Jan; 67(1):52-60. PubMed ID: 31584208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of microalgal cultivation for added-value products - A review.
    Bekirogullari M; Figueroa-Torres GM; Pittman JK; Theodoropoulos C
    Biotechnol Adv; 2020 Nov; 44():107609. PubMed ID: 32781245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in physicochemical parameters of microalgae cultivation for biofuel production.
    Hossain N; Mahlia TMI
    Crit Rev Biotechnol; 2019 Sep; 39(6):835-859. PubMed ID: 31185749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts.
    Veerabadhran M; Natesan S; MubarakAli D; Xu S; Yang F
    Chemosphere; 2021 Dec; 285():131436. PubMed ID: 34256200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-engineering of microalgae: Challenges and future prospects toward industrial and environmental applications.
    Muthukrishnan L
    J Basic Microbiol; 2022 Mar; 62(3-4):310-329. PubMed ID: 35061335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.
    Markou G; Nerantzis E
    Biotechnol Adv; 2013 Dec; 31(8):1532-42. PubMed ID: 23928208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products.
    Patel AK; Singhania RR; Sim SJ; Dong CD
    Bioresour Technol; 2021 Jan; 320(Pt B):124421. PubMed ID: 33246239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on machine learning approaches for microalgae cultivation systems.
    Syed T; Krujatz F; Ihadjadene Y; Mühlstädt G; Hamedi H; Mädler J; Urbas L
    Comput Biol Med; 2024 Apr; 172():108248. PubMed ID: 38493599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does the Internet of Things (IoT) help in microalgae biorefinery?
    Wang K; Khoo KS; Leong HY; Nagarajan D; Chew KW; Ting HY; Selvarajoo A; Chang JS; Show PL
    Biotechnol Adv; 2022; 54():107819. PubMed ID: 34454007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments.
    Apel AC; Weuster-Botz D
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):995-1008. PubMed ID: 25627468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel-A review.
    Pugazhendhi A; Nagappan S; Bhosale RR; Tsai PC; Natarajan S; Devendran S; Al-Haj L; Ponnusamy VK; Kumar G
    Sci Total Environ; 2020 Dec; 749():142218. PubMed ID: 33370912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development.
    Min KH; Kim DH; Ki MR; Pack SP
    Bioresour Technol; 2022 Jan; 344(Pt B):126404. PubMed ID: 34826566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.