These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36089300)

  • 1. H-beta zeolite-based dispersive solid-phase strategy for the multi-residue determination of pesticides.
    Wang S; Kong C; Wu N; Si W; Bai B
    Anal Chim Acta; 2022 Sep; 1227():340327. PubMed ID: 36089300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of oxidized multi-walled carbon nanotubes and zeolite nanoparticles for simultaneous preconcentration of codeine and tramadol in saliva prior to HPLC determination.
    Soltani N; Habibollahi S; Salamat A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 May; 1222():123693. PubMed ID: 37028171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography].
    Yuan J; Wang J; Xu W; Xu F; Lu X
    Se Pu; 2020 Nov; 38(11):1308-1315. PubMed ID: 34213102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.
    Salisaeng P; Arnnok P; Patdhanagul N; Burakham R
    J Agric Food Chem; 2016 Mar; 64(10):2145-52. PubMed ID: 26915268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.
    Caldas SS; Rombaldi C; Arias JL; Marube LC; Primel EG
    Talanta; 2016 Jan; 146():676-88. PubMed ID: 26695317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin as a green sorbent in dispersive micro-solid-phase extraction of several pesticides from fruit juices combined with dispersive liquid-liquid microextraction.
    Abbasalizadeh A; Sorouraddin SM; Farajzadeh MA; Marzi E; Afshar Mogaddam MR
    J Sep Sci; 2022 May; 45(9):1550-1559. PubMed ID: 35220687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Countercurrent Salting-out Homogenous Liquid-Liquid Extraction and Dispersive Liquid-Liquid Microextraction Based on the Solidification of Floating Organic Drop Followed by High-Performance Liquid Chromatography for the Isolation and Preconcentration of Pesticides from Fruit Samples.
    Teymori Z; Sadeghi M; Fattahi N
    J AOAC Int; 2022 Apr; 105(3):802-811. PubMed ID: 34904642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices.
    Sereshti H; Jamshidi F; Nouri N; Nodeh HR
    J Sci Food Agric; 2020 Apr; 100(6):2534-2543. PubMed ID: 31975389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water: a comparison between membrane-assisted solvent extraction and solid phase extraction.
    van Pinxteren M; Bauer C; Popp P
    J Chromatogr A; 2009 Jul; 1216(31):5800-6. PubMed ID: 19570541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: Application to a pharmacokinetic study.
    Qi C; Cai Q; Zhao P; Jia X; Lu N; He L; Hou X
    J Chromatogr A; 2016 Jun; 1449():30-8. PubMed ID: 27139217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis.
    Hao L; Liu X; Wang J; Wang C; Wu Q; Wang Z
    Talanta; 2015 Sep; 142():104-9. PubMed ID: 26003698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential extraction and enrichment of pesticide residues in Longan fruit by ultrasonic-assisted aqueous two-phase extraction linked to vortex-assisted dispersive liquid-liquid microextraction prior to high performance liquid chromatography analysis.
    Chen Z; Li Q; Yang T; Zhang Y; He M; Zeng H; Mai X; Liu Y; Fan H
    J Chromatogr A; 2020 May; 1619():460929. PubMed ID: 32008821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customized dispersive micro-solid-phase extraction device combined with micro-desorption for the simultaneous determination of 39 multiclass pesticides in environmental water samples.
    Nascimento MM; da Rocha GO; de Andrade JB
    J Chromatogr A; 2021 Feb; 1639():461781. PubMed ID: 33517136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive micro-solid-phase extraction of aflatoxins from commercial soy milk samples using a green vitamin-based metal-organic framework as an efficient sorbent followed by high performance liquid chromatography-tandem mass spectrometry determination.
    Mohebbi A; Nemati M; Afshar Mogaddam MR; Farajzadeh MA; Lotfipour F
    J Chromatogr A; 2022 Jun; 1673():463099. PubMed ID: 35526302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ fabrication of zeolite imidazole framework@hydroxyapatite composite for dispersive solid-phase extraction of benzodiazepines and their determination with high-performance liquid chromatography-VWD detection.
    Li ZL; Zhang ZY; Zhao TW; Meng CY; Zhang QY; Wang MM
    Mikrochim Acta; 2020 Sep; 187(9):540. PubMed ID: 32876888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [One-step rapid enrichment and detection of malachite green in aquaculture water based on metal-organic framework hydrogel].
    Liu N; Li P; Sun M; Qin H; Li Y; Li J; Liu H; Wu L
    Se Pu; 2022 Aug; 40(8):721-729. PubMed ID: 35903839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.
    Chen J; Zhou G; Deng Y; Cheng H; Shen J; Gao Y; Peng G
    J Sep Sci; 2016 Jan; 39(2):272-8. PubMed ID: 26553707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite.
    Nekhunguni PM; Tavengwa NT; Tutu H
    J Environ Manage; 2017 Jul; 197():550-558. PubMed ID: 28419977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.