BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 36089302)

  • 21. Functionalized Au
    Liu HB; Chen CY; Zhang CN; Du XJ; Li P; Wang S
    J Food Sci; 2019 Oct; 84(10):2916-2924. PubMed ID: 31502678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.
    Hu Y; Feng S; Gao F; Li-Chan EC; Grant E; Lu X
    Food Chem; 2015 Jun; 176():123-9. PubMed ID: 25624214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured hybrid surface enhancement Raman scattering substrate for the rapid determination of sulfapyridine in milk samples.
    Moreno V; Adnane A; Salghi R; Zougagh M; Ríos Á
    Talanta; 2019 Mar; 194():357-362. PubMed ID: 30609543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell magnetic Ag-molecularly imprinted composite for surface enhanced Raman scattering detection of carbaryl.
    Cheshari EC; Ren X; Li X
    J Environ Sci Health B; 2021; 56(3):222-234. PubMed ID: 33417510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine.
    Satheeshkumar E; Karuppaiya P; Sivashanmugan K; Chao WT; Tsay HS; Yoshimura M
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():91-97. PubMed ID: 28347923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flower-like Ag coated with molecularly imprinted polymers as a surface-enhanced Raman scattering substrate for the sensitive and selective detection of glibenclamide.
    Ren X; Li X
    Anal Methods; 2020 Jun; 12(22):2858-2864. PubMed ID: 32930209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K; Inbaraj BS; Chen BH
    Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles.
    Yazgan NN; Boyacı IH; Topcu A; Tamer U
    Anal Bioanal Chem; 2012 Jun; 403(7):2009-17. PubMed ID: 22552785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of 5-Hydroxymethylfurfural (5-HMF) in milk products by surface-enhanced Raman spectroscopy and its simulation analysis.
    Zhang J; Li Y; Lv M; Bai Y; Liu Z; Weng X; You C
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121393. PubMed ID: 35605423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A SERS-based lateral flow immunochromatographic assay using Raman reporter mediated-gap AuNR@Au nanoparticles as the substrate for the detection of enrofloxacin in food samples.
    Tian R; Ren Y; Wang T; Cao J; Li J; Deng A
    Anal Chim Acta; 2023 May; 1257():341152. PubMed ID: 37062566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ratiometric surface-enhanced Raman scattering strategy using gold nanoparticles confined on an ultrathin polydimethylsiloxane grafted gold mirror film substrate for ferbam screening in fruit juice.
    Ahmad W; Wang L; Li H; Chen Q
    Anal Chim Acta; 2023 Oct; 1276():341648. PubMed ID: 37573125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
    Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S
    Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food.
    Xu Y; Kutsanedzie FYH; Hassan M; Zhu J; Ahmad W; Li H; Chen Q
    Food Chem; 2020 Jun; 315():126300. PubMed ID: 32018077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bimetallic AgNPs@dopamine modified-halloysite nanotubes-AuNPs for adenine determination using surface-enhanced Raman scattering.
    Lai H; Zhang H; Li G; Hu Y
    Mikrochim Acta; 2021 Mar; 188(4):127. PubMed ID: 33733686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice.
    Wang J; Luo Z; Lin X
    Food Chem; 2023 Feb; 402():134433. PubMed ID: 36303364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Biocompatible Plasmonically Encoded Raman Scattering Nanoparticles Aid Ultrabright and Accurate Bioimaging.
    Su Y; Wen S; Luo X; Xue F; Wu S; Yuan B; Lu X; Cai C; Jiang LP; Wu P; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):135-147. PubMed ID: 33356115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecularly-imprinted SERS sensor based on a TiO
    Chen C; Wang X; Zhang Y; Li X; Gao H; Waterhouse GIN; Qiao X; Xu Z
    Food Chem; 2022 Nov; 394():133536. PubMed ID: 35753253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.