These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3608937)

  • 41. Some toxicological aspects of methamidophos exposure in mice.
    Zayed SM; Fakhr IM; el-Magraby S
    J Environ Sci Health B; 1984; 19(4-5):467-78. PubMed ID: 6470422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Duplication of acetylcholinesterase gene in diamondback moth strains with different sensitivities to acephate.
    Sonoda S; Shi X; Song D; Liang P; Gao X; Zhang Y; Li J; Liu Y; Li M; Matsumura M; Sanada-Morimura S; Minakuchi C; Tanaka T; Miyata T
    Insect Biochem Mol Biol; 2014 May; 48():83-90. PubMed ID: 24632376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simulated dermal contamination with capillary samples and field cholinesterase biomonitoring.
    Yuknavage KL; Fenske RA; Kalman DA; Keifer MC; Furlong CE
    J Toxicol Environ Health; 1997 May; 51(1):35-55. PubMed ID: 9169060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacokinetic and pharmacodynamic interaction for a binary mixture of chlorpyrifos and diazinon in the rat.
    Timchalk C; Poet TS; Hinman MN; Busby AL; Kousba AA
    Toxicol Appl Pharmacol; 2005 May; 205(1):31-42. PubMed ID: 15885262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Erythrocyte cholinesterase enzyme activity and hemoglobin values in cacao farmers of southwestern Nigeria as related to insecticide exposure.
    Sosan MB; Akingbohungbe AE; Durosinmi MA; Ojo IA
    Arch Environ Occup Health; 2010; 65(1):27-33. PubMed ID: 20147000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Role of Brain Methamidophos in Acephate Poisoning in Mice.
    Tanaka T; Sato H; Yoshida K; Kasai K
    J UOEH; 2021; 43(2):197-203. PubMed ID: 34092764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of aldicarb and methamidophos neurotoxicity at different ages in the rat: behavioral and biochemical parameters.
    Moser VC
    Toxicol Appl Pharmacol; 1999 Jun; 157(2):94-106. PubMed ID: 10366542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring hazards of acute exposure of Acephate in Drosophila melanogaster and search for l-ascorbic acid mediated defense in it.
    Rajak P; Dutta M; Khatun S; Mandi M; Roy S
    J Hazard Mater; 2017 Jan; 321():690-702. PubMed ID: 27701059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors in standardizing automated cholinesterase assays.
    Wilson BW; Padilla S; Henderson JD; Brimijoin S; Dass PD; Elliot G; Jaeger B; Lanz D; Pearson R; Spies R
    J Toxicol Environ Health; 1996 Jun; 48(2):187-95. PubMed ID: 8642625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolomic analysis of the toxic effect of chronic low-dose exposure to acephate on rats using ultra-performance liquid chromatography/mass spectrometry.
    Hao DF; Xu W; Wang H; Du LF; Yang JD; Zhao XJ; Sun CH
    Ecotoxicol Environ Saf; 2012 Sep; 83():25-33. PubMed ID: 22727594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurochemical effects of chronic dietary and repeated high-level acute exposure to chlorpyrifos in rats.
    Padilla S; Marshall RS; Hunter DL; Oxendine S; Moser VC; Southerland SB; Mailman RB
    Toxicol Sci; 2005 Nov; 88(1):161-71. PubMed ID: 16081522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of different oximes on rat and human cholinesterases inhibited by methamidophos: a comparative in vitro and in silico study.
    Lugokenski TH; Gubert P; Bueno DC; Nogara PA; de Aquino Saraiva R; Barcelos RP; Carratu VS; Bresolin L; de Vargas Barbosa NB; Pereira ME; da Rocha JB; Soares FA
    Basic Clin Pharmacol Toxicol; 2012 Dec; 111(6):362-70. PubMed ID: 22703537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides.
    Pradhan S; Roy I; Lodh G; Patra P; Choudhury SR; Samanta A; Goswami A
    J Environ Sci Health B; 2013; 48(7):559-69. PubMed ID: 23581688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of long-term aluminum feeding on kinetics attributes of tissue cholinesterases.
    Dave KR; Syal AR; Katyare SS
    Brain Res Bull; 2002 Jun; 58(2):225-33. PubMed ID: 12127022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acephate exposure during a perinatal life program to type 2 diabetes.
    Ribeiro TA; Prates KV; Pavanello A; Malta A; Tófolo LP; Martins IP; Oliveira JC; Miranda RA; Gomes RM; Vieira E; Franco CC; Barella LF; Francisco FA; Alves VS; Silveira SD; Moreira VM; Fabricio GS; Palma-Rigo K; Sloboda DM; Mathias PC
    Toxicology; 2016 Nov; 372():12-21. PubMed ID: 27765684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physicochemical, molecular-orbital and electronic properties of acephate and methamidophos.
    Singh AK; White T; Spassova D; Jiang Y
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Jan; 119(1):107-17. PubMed ID: 9568380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Safety related to exposure: dermal dose-red cell cholinesterase response relationships for ethoprop and Mocap 6EC.
    Knaak JB; Al-Bayati M; Gielow F; Simon GS; Raabe OG
    Bull Environ Contam Toxicol; 1987 May; 38(5):834-9. PubMed ID: 3580600
    [No Abstract]   [Full Text] [Related]  

  • 59. In vivo inhibition of chicken brain acetylcholinesterase and neurotoxic esterase in relation to the delayed neurotoxicity of leptophos and cyanofenphos.
    Soliman SA; Curley A; Farmer J; Novak R
    J Environ Pathol Toxicol Oncol; 1986; 7(1-2):211-24. PubMed ID: 2432215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determining a threshold sub-acute dose leading to minimal physiological alterations following prolonged exposure to the nerve agent VX in rats.
    Bloch-Shilderman E; Rabinovitz I; Egoz I; Yacov G; Allon N; Nili U
    Arch Toxicol; 2018 Feb; 92(2):873-892. PubMed ID: 29127449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.