These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36089561)
1. Self-supervised contrastive learning for integrative single cell RNA-seq data analysis. Han W; Cheng Y; Chen J; Zhong H; Hu Z; Chen S; Zong L; Hong L; Chan TF; King I; Gao X; Li Y Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36089561 [TBL] [Abstract][Full Text] [Related]
2. Contrastive self-supervised clustering of scRNA-seq data. Ciortan M; Defrance M BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773 [TBL] [Abstract][Full Text] [Related]
3. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data. Shi Y; Wan J; Zhang X; Yin Y Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858 [TBL] [Abstract][Full Text] [Related]
4. scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis. Tian SW; Ni JC; Wang YT; Zheng CH; Ji CM IEEE J Biomed Health Inform; 2023 Dec; 27(12):6133-6143. PubMed ID: 37751336 [TBL] [Abstract][Full Text] [Related]
5. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis. Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063 [TBL] [Abstract][Full Text] [Related]
6. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
7. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
8. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
9. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related]
10. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
11. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation. Chen L; Zhai Y; He Q; Wang W; Deng M Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393 [TBL] [Abstract][Full Text] [Related]
12. ScCCL: Single-Cell Data Clustering Based on Self-Supervised Contrastive Learning. Du L; Han R; Liu B; Wang Y; Li J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2233-2241. PubMed ID: 37022258 [TBL] [Abstract][Full Text] [Related]
13. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
14. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity. Yan X; Zheng R; Wu F; Li M Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425 [TBL] [Abstract][Full Text] [Related]
15. Supervised Adversarial Alignment of Single-Cell RNA-seq Data. Ge S; Wang H; Alavi A; Xing E; Bar-Joseph Z J Comput Biol; 2021 May; 28(5):501-513. PubMed ID: 33470876 [TBL] [Abstract][Full Text] [Related]
16. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Xu X; Yu X; Hu G; Wang K; Zhang J; Li X Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114 [TBL] [Abstract][Full Text] [Related]
17. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning. Li B; Peng C; You Z; Zhang X; Zhang S Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127 [TBL] [Abstract][Full Text] [Related]
18. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Wang CX; Zhang L; Wang B Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717 [TBL] [Abstract][Full Text] [Related]
19. scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention. Meng R; Yin S; Sun J; Hu H; Zhao Q Comput Biol Med; 2023 Oct; 165():107414. PubMed ID: 37660567 [TBL] [Abstract][Full Text] [Related]
20. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder. Zhao JP; Hou TS; Su Y; Zheng CH Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]