BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36089769)

  • 21. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
    Pan C; Sretenovic S; Qi Y
    Curr Opin Plant Biol; 2021 Apr; 60():101980. PubMed ID: 33401227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porcine antiviral activity is increased by CRISPRa-SAM system.
    Jiang J; Sun Y; Xiao R; Wai K; Ahmad MJ; Khan FA; Zhou H; Li Z; Zhang Y; Zhou A; Zhang S
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31371630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/dCas9 for hepatic fibrosis therapy: implications and challenges.
    Luo N; Zhong W; Li J; Lu J; Dong R
    Mol Biol Rep; 2022 Dec; 49(12):11403-11408. PubMed ID: 35960410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi.
    Mózsik L; Hoekzema M; de Kok NAW; Bovenberg RAL; Nygård Y; Driessen AJM
    Sci Rep; 2021 Jan; 11(1):1118. PubMed ID: 33441979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize.
    Li Y; Lin Z; Yue Y; Zhao H; Fei X; E L; Liu C; Chen S; Lai J; Song W
    Nat Plants; 2021 Dec; 7(12):1579-1588. PubMed ID: 34887519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
    Xu X; Qi LS
    J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
    Pan C; Wu X; Markel K; Malzahn AA; Kundagrami N; Sretenovic S; Zhang Y; Cheng Y; Shih PM; Qi Y
    Nat Plants; 2021 Jul; 7(7):942-953. PubMed ID: 34168320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System.
    Villegas Kcam MC; Chappell J
    Methods Mol Biol; 2022; 2518():203-215. PubMed ID: 35666447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Massively parallel characterization of CRISPR activator efficacy in human induced pluripotent stem cells and neurons.
    Wu Q; Wu J; Karim K; Chen X; Wang T; Iwama S; Carobbio S; Keen P; Vidal-Puig A; Kotter MR; Bassett A
    Mol Cell; 2023 Apr; 83(7):1125-1139.e8. PubMed ID: 36917981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying and Engineering Genes for Parthenogenesis in Plants.
    Vijverberg K; Ozias-Akins P; Schranz ME
    Front Plant Sci; 2019; 10():128. PubMed ID: 30838007
    [No Abstract]   [Full Text] [Related]  

  • 35. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding.
    Wang B; Zhu L; Zhao B; Zhao Y; Xie Y; Zheng Z; Li Y; Sun J; Wang H
    Mol Plant; 2019 Apr; 12(4):597-602. PubMed ID: 30902686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms.
    Wang Y; Tang Q; Pu L; Zhang H; Li X
    Front Plant Sci; 2022; 13():1049803. PubMed ID: 36589095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
    Lee K; Zhu H; Yang B; Wang K
    Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclease-Deficient Clustered Regularly Interspaced Short Palindromic Repeat-Based Approaches for
    Lek A; Ma K; Woodman KG; Lek M
    Hum Gene Ther; 2021 Mar; 32(5-6):260-274. PubMed ID: 33446040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.