BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36089916)

  • 1. Polymer type effect on PLGA-based microparticles preparation by solvent evaporation method with single emulsion system using focussed beam reflectance measurement.
    Muhaimin M; Chaerunisaa AY; Bodmeier R
    J Microencapsul; 2022 Sep; 39(6):512-521. PubMed ID: 36089916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data on the application of the focused beam reflectance measurement (FBRM): A process parameters dataset for the ethyl cellulose (EC) microparticles preparation by the solvent evaporation method.
    Muhaimin M; Bodmeier R
    Data Brief; 2020 Jun; 30():105574. PubMed ID: 32368597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for continuous microencapsulation process.
    Muhaimin M; Chaerunisaa AY; Bodmeier R
    Sci Rep; 2021 Sep; 11(1):19390. PubMed ID: 34588571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online monitoring of PLGA microparticles formation using Lasentec focused beam reflectance (FBRM) and particle video microscope (PVM).
    Zidan AS; Rahman Z; Khan MA
    AAPS J; 2010 Sep; 12(3):254-62. PubMed ID: 20352538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding reflection behavior as a key for interpreting complex signals in FBRM monitoring of microparticle preparation processes.
    Vay K; Friess W; Scheler S
    Int J Pharm; 2012 Nov; 437(1-2):1-10. PubMed ID: 22884839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationalized design to explore the full potential of PLGA microspheres as drug delivery systems.
    Martinez-Borrajo R; Diaz-Rodriguez P; Landin M
    Drug Deliv; 2023 Dec; 30(1):2219864. PubMed ID: 37272488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of PLGA microparticles by an emulsion-extraction process using glycofurol as polymer solvent.
    Aubert-Pouëssel A; Venier-Julienne MC; Saulnier P; Sergent M; Benoît JP
    Pharm Res; 2004 Dec; 21(12):2384-91. PubMed ID: 15648273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery.
    Zhang J; Wang J; Qiao F; Liu Y; Zhou Y; Li M; Ai M; Yang Y; Sui L; Zhou Z
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111560. PubMed ID: 33429284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of O/W Emulsion Solvent Evaporation Method for Itraconazole Sustained Release Microspheres.
    Wang W; Kojima H; Gao M; Yin X; Uchida T; Ni J
    Chem Pharm Bull (Tokyo); 2023; 71(7):520-527. PubMed ID: 37394601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising poly(lactic-co-glycolic acid) microparticle fabrication using a Taguchi orthogonal array design-of-experiment approach.
    Mensah RA; Kirton SB; Cook MT; Styliari ID; Hutter V; Chau DYS
    PLoS One; 2019; 14(9):e0222858. PubMed ID: 31557205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods.
    Zhang XQ; Intra J; Salem AK
    J Microencapsul; 2008 Feb; 25(1):1-12. PubMed ID: 18188727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size and loading efficiency of poly(D,L-lactic-co-glycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods.
    Iwata M; Nakamura Y; McGinity JW
    J Microencapsul; 1999; 16(1):49-58. PubMed ID: 9972502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jet milling--a new technique for microparticle preparation.
    Nykamp G; Carstensen U; Müller BW
    Int J Pharm; 2002 Aug; 242(1-2):79-86. PubMed ID: 12176228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.
    Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W
    Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization.
    O'Hara P; Hickey AJ
    Pharm Res; 2000 Aug; 17(8):955-61. PubMed ID: 11028941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres.
    Chen W; Palazzo A; Hennink WE; Kok RJ
    Mol Pharm; 2017 Feb; 14(2):459-467. PubMed ID: 27973854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.
    Wang H; Zhang G; Sui H; Liu Y; Park K; Wang W
    Int J Pharm; 2015 Dec; 496(2):723-31. PubMed ID: 26581771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection.
    Park CW; Lee HJ; Oh DW; Kang JH; Han CS; Kim DW
    Drug Des Devel Ther; 2018; 12():711-719. PubMed ID: 29670329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.